首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Animal domestication involved drastic phenotypic changes driven by strong artificial selection and also resulted in new populations of breeds, established by humans. This study aims to identify genes that show evidence of recent artificial selection during pig domestication.

Results

Whole-genome resequencing of 30 individual pigs from domesticated breeds, Landrace and Yorkshire, and 10 Asian wild boars at ~16-fold coverage was performed resulting in over 4.3 million SNPs for 19,990 genes. We constructed a comprehensive genome map of directional selection by detecting selective sweeps using an FST-based approach that detects directional selection in lineages leading to the domesticated breeds and using a haplotype-based test that detects ongoing selective sweeps within the breeds. We show that candidate genes under selection are significantly enriched for loci implicated in quantitative traits important to pig reproduction and production. The candidate gene with the strongest signals of directional selection belongs to group III of the metabolomics glutamate receptors, known to affect brain functions associated with eating behavior, suggesting that loci under strong selection include loci involved in behaviorial traits in domesticated pigs including tameness.

Conclusions

We show that a significant proportion of selection signatures coincide with loci that were previously inferred to affect phenotypic variation in pigs. We further identify functional enrichment related to behavior, such as signal transduction and neuronal activities, for those targets of selection during domestication in pigs.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1330-x) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

Modern cattle originate from populations of the wild extinct aurochs through a few domestication events which occurred about 8,000 years ago. Newly domesticated populations subsequently spread worldwide following breeder migration routes. The resulting complex historical origins associated with both natural and artificial selection have led to the differentiation of numerous different cattle breeds displaying a broad phenotypic variety over a short period of time.

Methodology/Principal Findings

This study gives a detailed assessment of cattle genetic diversity based on 1,121 individuals sampled in 47 populations from different parts of the world (with a special focus on French cattle) genotyped for 44,706 autosomal SNPs. The analyzed data set consisted of new genotypes for 296 individuals representing 14 French cattle breeds which were combined to those available from three previously published studies. After characterizing SNP polymorphism in the different populations, we performed a detailed analysis of genetic structure at both the individual and population levels. We further searched for spatial patterns of genetic diversity among 23 European populations, most of them being of French origin, under the recently developed spatial Principal Component analysis framework.

Conclusions/Significance

Overall, such high throughput genotyping data confirmed a clear partitioning of the cattle genetic diversity into distinct breeds. In addition, patterns of differentiation among the three main groups of populations—the African taurine, the European taurine and zebus—may provide some additional support for three distinct domestication centres. Finally, among the European cattle breeds investigated, spatial patterns of genetic diversity were found in good agreement with the two main migration routes towards France, initially postulated based on archeological evidence.  相似文献   

3.

Background

Domestic goats (Capra hircus) have been selected to play an essential role in agricultural production systems, since being domesticated from their wild progenitor, bezoar (Capra aegagrus). A detailed understanding of the genetic consequences imparted by the domestication process remains a key goal of evolutionary genomics.

Results

We constructed the reference genome of bezoar and sequenced representative breeds of domestic goats to search for genomic changes that likely have accompanied goat domestication and breed formation. Thirteen copy number variation genes associated with coat color were identified in domestic goats, among which ASIP gene duplication contributes to the generation of light coat-color phenotype in domestic goats. Analysis of rapidly evolving genes identified genic changes underlying behavior-related traits, immune response and production-related traits.

Conclusion

Based on the comparison studies of copy number variation genes and rapidly evolving genes between wild and domestic goat, our findings and methodology shed light on the genetic mechanism of animal domestication and will facilitate future goat breeding.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1606-1) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

When domestic taurine cattle diffused from the Fertile Crescent, local wild aurochsen (Bos primigenius) were still numerous. Moreover, aurochsen and introduced cattle often coexisted for millennia, thus providing potential conditions not only for spontaneous interbreeding, but also for pastoralists to create secondary domestication centers involving local aurochs populations. Recent mitochondrial genomes analyses revealed that not all modern taurine mtDNAs belong to the shallow macro-haplogroup T of Near Eastern origin, as demonstrated by the detection of three branches (P, Q and R) radiating prior to the T node in the bovine phylogeny. These uncommon haplogroups represent excellent tools to evaluate if sporadic interbreeding or even additional events of cattle domestication occurred.

Methodology

The survey of the mitochondrial DNA (mtDNA) control-region variation of 1,747 bovine samples (1,128 new and 619 from previous studies) belonging to 37 European breeds allowed the identification of 16 novel non-T mtDNAs, which after complete genome sequencing were confirmed as members of haplogroups Q and R. These mtDNAs were then integrated in a phylogenetic tree encompassing all available P, Q and R complete mtDNA sequences.

Conclusions

Phylogenetic analyses of 28 mitochondrial genomes belonging to haplogroups P (N = 2), Q (N = 16) and R (N = 10) together with an extensive survey of all previously published mtDNA datasets revealed major similarities between haplogroups Q and T. Therefore, Q most likely represents an additional minor lineage domesticated in the Near East together with the founders of the T subhaplogroups. Whereas, haplogroup R is found, at least for the moment, only in Italy and nowhere else, either in modern or ancient samples, thus supporting an origin from European aurochsen. Haplogroup R could have been acquired through sporadic interbreeding of wild and domestic animals, but our data do not rule out the possibility of a local and secondary event of B. primigenius domestication in Italy.  相似文献   

5.

Background

Numerous QTL mapping resource populations are available in livestock species. Usually they are analysed separately, although the same founder breeds are often used. The aim of the present study was to show the strength of analysing F2-crosses jointly in pig breeding when the founder breeds of several F2-crosses are the same.

Methods

Three porcine F2-crosses were generated from three founder breeds (i.e. Meishan, Pietrain and wild boar). The crosses were analysed jointly, using a flexible genetic model that estimated an additive QTL effect for each founder breed allele and a dominant QTL effect for each combination of alleles derived from different founder breeds. The following traits were analysed: daily gain, back fat and carcass weight. Substantial phenotypic variation was observed within and between crosses. Multiple QTL, multiple QTL alleles and imprinting effects were considered. The results were compared to those obtained when each cross was analysed separately.

Results

For daily gain, back fat and carcass weight, 13, 15 and 16 QTL were found, respectively. For back fat, daily gain and carcass weight, respectively three, four, and five loci showed significant imprinting effects. The number of QTL mapped was much higher than when each design was analysed individually. Additionally, the test statistic plot along the chromosomes was much sharper leading to smaller QTL confidence intervals. In many cases, three QTL alleles were observed.

Conclusions

The present study showed the strength of analysing three connected F2-crosses jointly. In this experiment, statistical power was high because of the reduced number of estimated parameters and the large number of individuals. The applied model was flexible and was computationally fast.  相似文献   

6.

Key message

This study revealed that the western Mediterranean provided the founder population for domesticated narrow-leafed lupin and that genetic diversity decreased significantly during narrow-leafed lupin domestication.

Abstract

The evolutionary history of plants during domestication profoundly shaped the genome structure and genetic diversity of today’s crops. Advances in next-generation sequencing technologies allow unprecedented opportunities to understand genome evolution in minor crops, which constitute the majority of plant domestications. A diverse set of 231 wild and domesticated narrow-leafed lupin (Lupinus angustifolius L.) accessions were subjected to genotyping-by-sequencing using diversity arrays technology. Phylogenetic, genome-wide divergence and linkage disequilibrium analyses were applied to identify the founder population of domesticated narrow-leafed lupin and the genome-wide effect of domestication on its genome. We found wild western Mediterranean population as the founder of domesticated narrow-leafed lupin. Domestication was associated with an almost threefold reduction in genome diversity in domesticated accessions compared to their wild relatives. Selective sweep analysis identified no significant footprints of selection around domestication loci. A genome-wide association study identified single nucleotide polymorphism markers associated with pod dehiscence. This new understanding of the genomic consequences of narrow-leafed lupin domestication along with molecular marker tools developed here will assist plant breeders more effectively access wild genetic diversity for crop improvement.
  相似文献   

7.

Background

Identifying the phenotypic responses to domestication remains a long-standing and important question for researchers studying its early history. The great diversity in domestic animals and plants that exists today bears testament to the profound changes that domestication has induced in their ancestral wild forms over the last millennia. Domestication is a complex evolutionary process in which wild organisms are moved to new anthropogenic environments. Although modern genetics are significantly improving our understanding of domestication and breed formation, little is still known about the associated morphological changes linked to the process itself. In order to explore phenotypic variation induced by different levels of human control, we analysed the diversity of dental size, shape and allometry in modern free-living and captive wild, wild x domestic hybrid, domestic and insular Sus scrofa populations.

Results

We show that domestication has created completely new dental phenotypes not found in wild boar (although the amount of variation amongst domestic pigs does not exceed that found in the wild). Wild boar tooth shape also appears to be biogeographically structured, likely the result of post-glacial recolonisation history. Furthermore, distinct dental phenotypes were also observed among domestic breeds, probably the result of differing types and intensity of past and present husbandry practices. Captivity also appears to impact tooth shape. Wild x domestic hybrids possess second molars that are strictly intermediate in shape between wild boar and domestic pigs (third molars, however, showing greater shape similarity with wild boar) while their size is more similar to domestic pigs. The dental phenotypes of insular Sus scrofa populations found on Corsica and Sardinia today (originally introduced by Neolithic settlers to the islands) can be explained either by feralization of the original introduced domestic swine or that the founding population maintained a wild boar phenotype through time.

Conclusions

Domestication has driven significant phenotypic diversification in Sus scrofa. Captivity (environmental control), hybridization (genome admixture), and introduction to islands all correspond to differing levels of human control and may be considered different stages of the domestication process. The relatively well-known genetic evolutionary history of pigs shows a similar complexity at the phenotypic level.

Electronic supplementary material

The online version of this article (doi:10.1186/s12862-014-0269-x) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.

Background

In recent decades, local varieties of domesticated animal species have been frequently crossed with economically superior breeds which has resulted in considerable genetic contributions from migrants. Optimum contribution selection by maximizing gene diversity while constraining breeding values of the offspring or vice versa could eventually lead to the extinction of local breeds with historic migration because maximization of gene diversity or breeding values would be achieved by maximization of migrant contributions. Therefore, other objective functions are needed for these breeds.

Results

Different objective functions and side constraints were compared with respect to their ability to reduce migrant contributions, to increase the genome equivalents originating from native founders, and to conserve gene diversity. Additionally, a new method for monitoring the development of effective size for breeds with incomplete pedigree records was applied. Approaches were compared for Vorderwald cattle, Hinterwald cattle, and Limpurg cattle. Migrant contributions could be substantially decreased for these three breeds, but the potential to increase the native genome equivalents is limited.

Conclusions

The most promising approach was constraining migrant contributions while maximizing the conditional probability that two alleles randomly chosen from the offspring population are not identical by descent, given that both descend from native founders.  相似文献   

10.

Background and Aims

The actual number of domestications of a crop is one of the key questions in domestication studies. Answers to this question have generally been based on relationships between wild progenitors and domesticated descendants determined with anonymous molecular markers. In this study, this question was investigated by determining the number of instances a domestication phenotype had been selected in a crop species. One of the traits that appeared during domestication of common bean (Phaseolus vulgaris) is determinacy, in which stems end with a terminal inflorescence. It has been shown earlier that a homologue of the arabidopsis TFL1 gene – PvTFL1y – controls determinacy in a naturally occurring variation of common bean.

Methods

Sequence variation was analysed for PvTFL1y in a sample of 46 wild and domesticated accessions that included determinate and indeterminate accessions.

Key Results

Indeterminate types – wild and domesticated – showed only synonymous nucleotide substitutions. Determinate types – observed only among domesticated accessions – showed, in addition to synonymous substitutions, non-synonymous substitutions, indels, a putative intron-splicing failure, a retrotransposon insertion and a deletion of the entire locus. The retrotransposon insertion was observed in 70 % of determinate cultivars, in the Americas and elsewhere. Other determinate mutants had a more restricted distribution in the Americas only, either in the Andean or in the Mesoamerican gene pool of common bean.

Conclusions

Although each of the determinacy haplotypes probably does not represent distinct domestication events, they are consistent with the multiple (seven) domestication pattern in the genus Phaseolus. The predominance of determinacy in the Andean gene pool may reflect domestication of common bean prior to maize introduction in the Andes.  相似文献   

11.

Background

The domestic dog is a rich resource for mapping the genetic components of phenotypic variation due to its unique population history involving strong artificial selection. Genome-wide association studies have revealed a number of chromosomal regions where genetic variation associates with morphological characters that typify dog breeds. A region on chromosome 10 is among those with the highest levels of genetic differentiation between dog breeds and is associated with body mass and ear morphology, a common motif of animal domestication. We characterised variation in this region to uncover haplotype structure and identify candidate functional variants.

Results

We first identified SNPs that strongly associate with body mass and ear type by comparing sequence variation in a 3 Mb region between 19 breeds with a variety of phenotypes. We next genotyped a subset of 123 candidate SNPs in 288 samples from 46 breeds to identify the variants most highly associated with phenotype and infer haplotype structure. A cluster of SNPs that associate strongly with the drop ear phenotype is located within a narrow interval downstream of the gene MSRB3, which is involved in human hearing. These SNPs are in strong genetic linkage with another set of variants that correlate with body mass within the gene HMGA2, which affects human height. In addition we find evidence that this region has been under selection during dog domestication, and identify a cluster of SNPs within MSRB3 that are highly differentiated between dogs and wolves.

Conclusions

We characterise genetically linked variants that potentially influence ear type and body mass in dog breeds, both key traits that have been modified by selective breeding that may also be important for domestication. The finding that variants on long haplotypes have effects on more than one trait suggests that genetic linkage can be an important determinant of the phenotypic response to selection in domestic animals.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1702-2) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background and Aims

The wild progenitors of the Near Eastern legumes have low germination rates mediated by hardseededness. Hence it was argued that cultivation of these wild legumes would probably result in no yield gain. Based on the meagre natural yield of wild lentil and its poor germination, it was suggested that wild Near Eastern grain legumes were unlikely to have been adopted for cultivation unless freely germinating types were available for the incipient farmers. Unlike wild cereals, data from experimental cultivation of wild legumes are lacking.

Methods

Replicated nurseries of wild pea (Pisum elatius, P. humile and P. fulvum) were sown during 2007–2010 in the Mediterranean district of Israel. To assess the effect of hardseededness on the yield potential, seeds of the wild species were either subjected to scarification (to ensure germination) or left intact, and compared with domesticated controls.

Key Results

Sowing intact wild pea seeds mostly resulted in net yield loss due to poor establishment caused by wild-type low germination rates, while ensuring crop establishment by scarification resulted in net, although modest, yield gain, despite considerable losses due to pod dehiscence. Harvest efficiency of the wild pea plots was significantly higher (2–5 kg seeds h−1) compared with foraging efficiency in wild pea populations (ranging from a few grams to 0·6 kg h−1).

Conclusions

Germination and yield data from ‘cultivation’ of wild pea suggest that Near Eastern legumes are unlikely to have been domesticated via a protracted process. Put differently, the agronomic implications of the hardseededness of wild legumes are incompatible with a millennia-long scenario of unconscious selection processes leading to ‘full’ domestication. This is because net yield loss in cultivation attempts is most likely to have resulted in abandonment of the respective species within a short time frame, rather than perpetual unprofitable cultivation for several centuries or millennia.  相似文献   

13.

Background

Signatures of selection are regions in the genome that have been preferentially increased in frequency and fixed in a population because of their functional importance in specific processes. These regions can be detected because of their lower genetic variability and specific regional linkage disequilibrium (LD) patterns.

Methods

By comparing the differences in regional LD variation between dairy and beef cattle types, and between indicine and taurine subspecies, we aim at finding signatures of selection for production and adaptation in cattle breeds. The VarLD method was applied to compare the LD variation in the autosomal genome between breeds, including Angus and Brown Swiss, representing taurine breeds, and Nelore and Gir, representing indicine breeds. Genomic regions containing the top 0.01 and 0.1 percentile of signals were characterized using the UMD3.1 Bos taurus genome assembly to identify genes in those regions and compared with previously reported selection signatures and regions with copy number variation.

Results

For all comparisons, the top 0.01 and 0.1 percentile included 26 and 165 signals and 17 and 125 genes, respectively, including TECRL, BT.23182 or FPPS, CAST, MYOM1, UVRAG and DNAJA1.

Conclusions

The VarLD method is a powerful tool to identify differences in linkage disequilibrium between cattle populations and putative signatures of selection with potential adaptive and productive importance.  相似文献   

14.

Background

In the 1980s, Korean native black pigs from Jeju Island (Jeju black pigs) served as representative sample of Korean native black pigs, and efforts were made to help the species rebound from the brink of extinction, which occurred as a result of the introduction of Western pig breeds. Geographical separation of Jeju Island from the Korean peninsula has allowed Jeju black pigs not only to acquire unique characteristics but also to retain merits of rare Korean native black pigs.

Results

To further analyze the Jeju black pig genome, we performed whole-genome re-sequencing (average read depth of 14×) of 8 Jeju black pig and 6 Korean pigs (which live on the Korean peninsula) to compare and identify putative signatures of positive selection in Jeju black pig, the true and pure Korean native black pigs. The candidate genes potentially under positive selection in Jeju black pig support previous reports of high marbling score, rare occurrence of pale, soft, exudative (PSE) meat, but low growth rate and carcass weight compared to Western breeds.

Conclusions

Several candidate genes potentially under positive selection were involved in fatty acid transport and may have contributed to the unique characteristics of meat quality in JBP. Jeju black pigs can offer a unique opportunity to investigate the true genetic resource of once endangered Korean native black pigs. Further genome-wide analyses of Jeju black pigs on a larger population scale are required in order to define a conservation strategy and improvement of native pig resources.

Electronic supplementary material

The online version of this article (doi:10.1186/s12863-014-0160-1) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background and Aims

Artificial selection, the main driving force of domestication, depends on human perception of intraspecific variation and operates through management practices that drive morphological and genetic divergences with respect to wild populations. This study analysed the recognition of varieties of Crescentia cujete by Maya people in relation to preferred plant characters and documents ongoing processes of artificial selection influencing differential chloroplast DNA haplotype distribution in sympatric wild and home-garden populations.

Methods

Fifty-three home gardens in seven villages (93 trees) and two putative wild populations (43 trees) were sampled. Through semi-structured interviews we documented the nomenclature of varieties, their distinctive characters, provenance, frequency and management. Phenotypic divergence of fruits was assessed with morphometric analyses. Genetic analyses were performed through five cpDNA microsatellites.

Key Results

The Maya recognize two generic (wild/domesticated) and two specific domesticated (white/green) varieties of Crescentia cujete. In home gardens, most trees (68 %) were from domesticated varieties while some wild individuals (32 %) were tolerated. Cultivation involves mainly vegetative propagation (76 %). Domesticated fruits were significantly rounder, larger and with thicker pericarp than wild fruits. Haplotype A was dominant in home gardens (76 %) but absent in wild populations. Haplotypes B–F were found common in the wild but at low frequency (24 %) in home gardens.

Conclusions

The gourd tree is managed through clonal and sexual propagules, fruit form and size being the main targets of artificial selection. Domesticated varieties belong to a lineage preserved by vegetative propagation but propagation by seeds and tolerance of spontaneous trees favour gene flow from wild populations. Five mutational steps between haplotypes A and D suggest that domesticated germplasm has been introduced to the region. The close relationship between Maya nomenclature and artificial selection has maintained the morphological and haplotypic identity (probably for centuries) of domesticated Crescentia despite gene flow from wild populations.  相似文献   

16.
17.

Background

New tetradactyl theropod footprints from Upper Jurassic (Oxfordian-Kimmeridgian) have been found in the Iouaridène syncline (Morocco). The tracksites are at several layers in the intermediate lacustrine unit of Iouaridène Formation. The footprints were named informally in previous works “Eutynichnium atlasipodus”. We consider as nomen nudum.

Methodology/Principal Findings

Boutakioutichnium atlasicus ichnogen. et ichnosp. nov. is mainly characterized by the hallux impression. It is long, strong, directed medially or forward, with two digital pads and with the proximal part of the first pad in lateral position. More than 100 footprints in 15 trackways have been studied with these features. The footprints are large, 38–48 cm in length, and 26–31 cm in width.

Conclusions/Significance

Boutakioutichnium mainly differs from other ichnotaxa with hallux impression in lacking metatarsal marks and in not being a very deep footprint. The distinct morphology of the hallux of the Boutakioutichnium trackmaker –i.e. size and hallux position- are unique in the dinosaur autopodial record to date.  相似文献   

18.
Pigs have experienced dramatic selection due to domestication, which has led to many different phenotypes when compared to their wild counterparts, especially in the last several decades. Currently, genome‐wide scans in both cattle and humans showing positive selection footprints have been investigated. However, few studies have focused on porcine selection footprints, particularly on a genome‐wide scale. Surveying for selection footprints across porcine genomes can be quite valuable for revealing the genetic mechanisms of phenotypic diversity. Here, we employed a medium sequencing depth (5–20x/site per individual, on average) approach called genotyping by genome reducing and sequencing (GGRS) to detect genome‐wide selection signatures of two domestic pig breeds (Yorkshire and Landrace) that have been under intensive selection for traits of muscle development, growth and behavior. The relative extended haplotype homozygosity test, which identifies selection signatures by measuring the characteristics of haplotypes’ frequency distribution within a single population, was also applied to identify potential positively selected regions. As a result, signatures of positive selection were found in each breed. However, most selection signatures were population specific and related to genomic regions containing genes for biological categories including brain development, metabolism, growth and olfaction. Furthermore, the result of the gene set enrichment analysis indicated that selected regions of the two breeds presented a different over‐representation of genes in the Gene Ontology annotations and Kyoto Encyclopedia of Genes and Genomes pathways. Our results revealed a genome‐wide map of selection footprints in pigs and may help us better understand the mechanisms of selection in pig breeding.  相似文献   

19.

Background and Aims

The harvesting method of wild and cultivated cereals has long been recognized as an important factor in the emergence of domesticated non-shattering ear genotypes. This study aimed to quantify the effects of spike brittleness and threshability on threshing time and efficiency in emmer wheat, and to evaluate the implications of post-harvest processes on domestication of cereals in the Near East.

Methods

A diverse collection of tetraploid wheat genotypes, consisting of Triticum turgidum ssp. dicoccoides – the wild progenitor of domesticated wheat – traditional landraces, modern cultivars (T. turgidum ssp. durum) and 150 recombinant (wild × modern) inbred lines, was used in replicated controlled threshing experiments to quantify the effects of spike brittleness and threshability on threshing time and efficiency.

Key Results

The transition from a brittle hulled wild phenotype to non-brittle hulled phenotype (landraces) was associated with an approx. 30 % reduction in threshing time, whereas the transition from the latter to non-brittle free-threshing cultivars was associated with an approx. 85 % reduction in threshing time. Similar trends were obtained with groups of recombinant inbred lines showing extreme phenotypes of brittleness and threshability.

Conclusions

In tetraploid wheat, both non-brittle spike and free-threshing are labour-saving traits that increase the efficiency of post-harvest processing, which could have been an incentive for rapid domestication of the Near Eastern cereals, thus refuting the recently proposed hypothesis regarding extra labour associated with the domesticated phenotype (non-brittle spike) and its presumed role in extending the domestication episode time frame.  相似文献   

20.

Background

A large single nucleotide polymorphism (SNP) dataset was used to analyze genome-wide diversity in a diverse collection of watermelon cultivars representing globally cultivated, watermelon genetic diversity. The marker density required for conducting successful association mapping depends on the extent of linkage disequilibrium (LD) within a population. Use of genotyping by sequencing reveals large numbers of SNPs that in turn generate opportunities in genome-wide association mapping and marker-assisted selection, even in crops such as watermelon for which few genomic resources are available. In this paper, we used genome-wide genetic diversity to study LD, selective sweeps, and pairwise FST distributions among worldwide cultivated watermelons to track signals of domestication.

Results

We examined 183 Citrullus lanatus var. lanatus accessions representing domesticated watermelon and generated a set of 11,485 SNP markers using genotyping by sequencing. With a diverse panel of worldwide cultivated watermelons, we identified a set of 5,254 SNPs with a minor allele frequency of ≥ 0.05, distributed across the genome. All ancestries were traced to Africa and an admixture of various ancestries constituted secondary gene pools across various continents. A sliding window analysis using pairwise FST values was used to resolve selective sweeps. We identified strong selection on chromosomes 3 and 9 that might have contributed to the domestication process. Pairwise analysis of adjacent SNPs within a chromosome as well as within a haplotype allowed us to estimate genome-wide LD decay. LD was also detected within individual genes on various chromosomes. Principal component and ancestry analyses were used to account for population structure in a genome-wide association study. We further mapped important genes for soluble solid content using a mixed linear model.

Conclusions

Information concerning the SNP resources, population structure, and LD developed in this study will help in identifying agronomically important candidate genes from the genomic regions underlying selection and for mapping quantitative trait loci using a genome-wide association study in sweet watermelon.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-767) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号