首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Summary Auditory brainstem responses (ABRs) were recorded in ground squirrels (Citellus lateralis) arousing from hibernation. Squirrels implanted with recording screws to record ABRs, and a thermistor to record brain temperature, were placed in a cold room at 9 °C on a 2L:22D light-dark cycle. Hibernating animals were moved from the cold room and ABRs recorded during arousal. The responses showed a gradual development of all brainstem peaks.At low temperatures there were very long latencies to the peaks. The amplitudes of the peaks increased (with fluctuations) as brain temperature increased. The data indicate that neural generators on the brainstem auditory pathway were all activated early in arousal.These results do not support the hypothesis that successive peaks appear and grow in amplitude only after previous peaks are fully developed.  相似文献   

2.
Summary Auditory brain stem responses (ABR) were recorded from the head surface of non-anesthetized and non-relaxed bottle-nosed dolphins, Tursiops truncatus. The region of best ABR recording was shown to be located 6–9 cm caudal to the blowhole. The threshold values were about 1 mPa for noise bursts and –3 dB re 1 mPa for tone bursts of the optimal frequency (80 kHz). The maximum frequency at which ABR could be evoked was 140 kHz. The duration of temporal summation reached 0.5 ms at intensities near the threshold and decreased with an increase in intensity. When the stimuli were paired clicks of the same intensity, the time to complete recovery from the second response was about 5 ms, while that to its 50% recovery was 0.7 ms. When the conditioning click exceeded the testing one in intensity, prolongation of the recovery period was observed. A 40-dB intensity difference led to an approximately 10-fold prolongation of this period.Abbreviations ABR auditory brain stem response - EP evoked potential  相似文献   

3.
Phonotaxis in flying crickets   总被引:1,自引:1,他引:0  
The effects of two-tone stimuli on the high frequency bat-avoidance steering behavior of flying crickets (Teleogryllus oceanicus) were studied during tethered flight. Similarly, the effects of two-tone stimuli on the ultrasound sensitive auditory interneuron, Int-1, which elicits this behavior, were studied using intracellular staining and recording techniques. When a low frequency tone (3-8 kHz) was presented simultaneously with an aversive high frequency tone (in a two-tone stimulus paradigm), the high frequency avoidance steering behavior was suppressed. Suppression was optimal when the low frequency tone was between 4 and 5 kHz and about 10-15 dB louder than the high frequency tone (Figs. 2, 3). Best suppression occurred when the low frequency tone-pulse just preceded or overlapped the high frequency tone-pulse, indicating that the suppressive effects of 5 kHz could last for up to 70 ms (Fig. 4). The threshold for avoidance of the bat-like stimulus was elevated when model bat biosonar (30 kHz) was presented while the animal was performing positive phonotaxis toward 5 kHz model calling song, but only if the calling song intensity was relatively high (greater than 70-80 dB SPL) (Fig. 1). However, avoidance steering could always be elicited as long as the calling song was not more than 10 dB louder than the ultrasound (Fig. 1). This suppressive effect did not require performance of positive phonotaxis to the calling song (Fig. 2) and was probably due to the persistence of the suppressive effects of the 5 kHz model calling song (Fig. 4). The requirement for relatively high intensities of calling song suggest that the suppression of bat-avoidance by the calling song is not likely to be of great significance in nature. The high frequency harmonics of the male cricket's natural calling song overlap the lower frequency range used by insectivorous bats (10-20 kHz) and are loud enough to elicit avoidance behavior in a flying female as she closely approaches a singing male (Fig. 5). The high frequency 'harmonics' of a model calling song were aversive even if presented with a normally attractive temporal pattern (pulse repetition rate of 16 pps) (Fig. 6A). When the 5 kHz 'fundamental' was added to one of the high frequency 'harmonics', in a two-tone stimulus paradigm, this complex model calling song was attractive; the high frequency 'harmonic' no longer elicited the avoidance behavior (Fig. 6) and the animals steered toward the model CS. Thus, addition of 5 kHz to a high frequency harmonic of the calling song 'masked' the aversive nature of this stimulus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
徐立  吕建忠 《生理学报》1991,43(3):306-310
用不同频率的短纯音骨导刺激,在7名(14耳)听力正常受试者同时记录双耳声诱发耳声发射(EOAE)。此法比单耳轮流记录省时一半。研究结果表明,EOAE 为一种窄带声,其中心频率随刺激声频率增高而增高,提示 EOAE 产生部位在接受刺激声频率对应的耳蜗部位附近。EOAE 的潜伏期与刺激强度无明显关系,但有随刺激声频率增高而变短的趋势,可能与不同频率刺激声诱发的 EOAE 在基底膜上产生的部位与鼓膜之间的距离不等有关。除1耳用4.0kHz 外,用1.0,2.0,3.0和4.0kHz 短纯音刺激在14耳全可记录到 EOAE,0.5kHz和6.0kHz 则分别在10耳和7耳记录到 EOAE。0.5—6.0kHz 短纯音诱发的 EOAE 的阈值均值连线所得的声发射耳蜗图上可见,1.0kHz 处阈值最低,而在这些受试者所测得的中耳共振频率平均值为1100±230Hz,推测1.0kHz EOAE 阈值最低与中耳的传导函数有关。本文描述的骨导双耳同时记录 EOAE 并描记声发射耳蜗图的方法可用于临床的听力客观评价。  相似文献   

5.
The parasitoid tachinid fly Homotrixa alleni detects its hosts by their acoustic signals. The tympanal organ of the fly is located at the prothorax and contains scolopidial sensory units of different size and orientation. The tympanal membrane vibrates in the frequency range of approximately 4–35 kHz, which is also reflected in the hearing threshold measured at the neck connective. The auditory organ is not tuned to the peak frequency (5 kHz) of the main host, the bush cricket Sciarasaga quadrata. Auditory afferents project in the three thoracic neuromeres. Most of the ascending interneurons branch in all thoracic neuromeres and terminate in the deutocerebrum of the brain. The interneurons do not differ considerably in frequency tuning, but in their sensitivity with lowest thresholds around 30 dB SPL. Suprathreshold responses of most neurons depend on frequency and intensity, indicating inhibitory influence at higher intensities. Some neurons respond particularly well at low frequency sounds (around 5 kHz) and high intensities (80–90 dB SPL), and thus may be involved in detection of the primary host, S. quadrata. The auditory system of H. alleni contains auditory interneurons reacting in a wide range of temporal patterns from strictly phasic to tonic and with clear differences in frequency responses.  相似文献   

6.
Summary Calling song with a carrier frequency of 5 kHz evokes positive phonotaxis in female crickets,Gryllus bimaculatus, when presented at an azimuth. In contrast, a continuous tone of 4.7 kHz in the same position when paired with calling song from above leads to negative phonotaxis. Under open-loop conditions, when a tethered animal runs on a paired tread wheel, characteristic curves are produced with the stable equilibrium point towards or away from the stimulus, respectively (Fig. 3).In order to understand this sign reversal at the neuronal level, directional characteristics of the ascending acoustic inter neurons AN1 and AN2 were measured using extracellular recordings from the cervical connectives.Taking the mean spike rate of the interneurons as a measure for their excitation, the function relating response magnitude to stimulus direction for calling song corresponds well to the behavioural characteristic curve (Fig. 5). The response function obtained using a continuous tone with simultaneous presentation of calling song from above is similar (Fig. 5) and hence does not correspond to the inverse behavioural characteristic curve.However, consideration of the extent to which the temporal parameters of the calling song (syllables and chirps) are reflected in the neuronal response (amplitudes of the Fourier components) leads to characteristic curves for AN1 and AN2 which are in good agreement with the behaviour for stimulation with calling song as well as for the continuous tone experiment (Fig. 8). In addition, the neural response curves correspond to the behaviour in showing smaller amplitudes when a continuous tone rather than the calling song is presented on the horizon (Fig. 8).From these data we conclude that the activity in interneurons AN1 and AN2 does not directly guide orientation in mating behaviour but first is filtered by a mechanism tuned to the frequency of syllables and/or chirps. According to this hypothesis recognition of conspecific song and localization proceed sequentially inGryllus.  相似文献   

7.
Several anabantoid species produce broad-band sounds with high-pitched dominant frequencies (0.8–2.5 kHz), which contrast with generally low-frequency hearing abilities in (perciform) fishes. Utilizing a recently developed auditory brainstem response recording-technique, auditory sensitivities of the gouramis Trichopsis vittata, T. pumila, Colisa lalia, Macropodus opercularis and Trichogaster trichopterus were investigated and compared with the sound characteristics of the respective species. All five species exhibited enhanced sound-detecting abilities and perceived tone bursts up to 5 kHz, which qualifies this group as hearing specialists. All fishes possessed a high-frequency sensitivity maximum between 800 Hz and 1500 Hz. Lowest hearing thresholds were found in T. trichopterus (76 dB re 1 μPa at 800 Hz). Dominant frequencies of sounds correspond with the best hearing bandwidth in T. vittata (1–2 kHz) and C. lalia (0.8–1 kHz). In the smallest species, T. pumila, dominant frequencies of acoustic signals (1.5–2.5 kHz) do not match lowest thresholds, which were below 1.5 kHz. However, of all species studied, T. pumila had best hearing sensitivity at frequencies above 2 kHz. The association between high-pitched sounds and hearing may be caused by the suprabranchial air-breathing chamber, which, lying close to the hearing and sonic organs, enhances both sound perception and emission at its resonant frequency. Accepted: 26 November 1997  相似文献   

8.
Hearing in the FM-bat Phyllostomus discolor: a behavioral audiogram   总被引:3,自引:3,他引:0  
Absolute auditory thresholds of six adult lesser spear-nosed bats Phyllostomus discolor (Chiroptera, Phyllostomidae) were determined in a two-alternative forced-choice procedure. Behavioral responses to pure tone stimuli could be elicited throughout the tested frequency range of 5–142 kHz. The shape of the average audiogram is characterized by two sensitivity peaks and a pronounced increase of thresholds around 55 kHz, and towards the limits of the tested frequency range. The spectral extent of both sensitivity peaks shows a close relation to the bandwidth of two types of species-specific vocalizations. The first low threshold area (> 10 and < 55 kHz) of the audiogram seems perfectly adapted to the directive call used for intraspecific communication, whereas the second sensitivity peak, centered around 85 kHz, covers most of the bandwidth of the species' echolocation calls.Abbreviations CF constant frequency - FM frequency modulation - l left - r right - SPL Sound pressure level  相似文献   

9.
Summary This report describes the ontogenesis of tonotopy in the inferior colliculus (IC) of the rufous horseshoe bat (Rhinolophus rouxi). Horseshoe bats are deaf at birth, but consistent tonotopy with a low-to-high frequency gradient from dorsolateral to ventromedial develops from the 2nd up to the 5th week. The representation of the auditory fovea is established in ventro-mediocaudal parts of the IC during the 3rd postnatal week (Fig. 3). Then, a narrow frequency band 5 kHz in width, comprising 16% of the bat's auditory range, captures 50–60 vol% of the IC (Fig. 3c). However, foveal tuning is 10–12 kHz (1/3 octave) lower than in adults; foveal tuning in females (65–68 kHz) is 2–3 kHz higher than in males (62–65 kHz). Thereafter, foveal tuning increases by 1–1.5 kHz per day up to the 5th postnatal week, when the adult hearing range is established (Figs. 4, 5). The increase of sensitivity and of tuning sharpness of single units also follows a low-to-high frequency gradient (Fig. 6).Throughout this development the foveal tuning matches the second harmonic of the echolocation pulses vocalised by these young bats. The results confirm the hypothesis of developmental shifts in the frequency-place code for the foveal high frequency representation in the IC.Abbreviations BF best frequency - CF constant frequency - FM frequency modulation - IC inferior colliculus - IHC inner hair cell; - OHC outer hair cell - RR Rhinolophus rouxi  相似文献   

10.
Thresholds for evoked vocal responses and thresholds of multiunit midbrain auditory responses to pure tones and synthetic calls were investigated in males of Pleurodema thaul, as behavioral thresholds well above auditory sensitivity have been reported for other anurans. Thresholds for evoked vocal responses to synthetic advertisement calls played back at increasing intensity averaged 43 dB RMS SPL (range 31–52 dB RMS SPL), measured at the subjects’ position. Number of pulses increased with stimulus intensities, reaching a plateau at about 18–39 dB above threshold and decreased at higher intensities. Latency to call followed inverse trends relative to number of pulses. Neural audiograms yielded an average best threshold in the high frequency range of 46.6 dB RMS SPL (range 41–51 dB RMS SPL) and a center frequency of 1.9 kHz (range 1.7–2.6 kHz). Auditory thresholds for a synthetic call having a carrier frequency of 2.1 kHz averaged 44 dB RMS SPL (range 39–47 dB RMS SPL). The similarity between thresholds for advertisement calling and auditory thresholds for the advertisement call indicates that male P. thaul use the full extent of their auditory sensitivity in acoustic interactions, likely an evolutionary adaptation allowing chorusing activity in low-density aggregations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号