首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The main neurotoxic components, toxins Hydrophis ornatus a and Hydrophis lapemoides a, were isolated from the venoms of the sea snakes Hydrophis ornatus and Hydrophis lapemoides respectively. The amino acid sequence of toxin Hydrophis ornatus a was deduced to be identical with that of toxin Astrotia stokesii a [Maeda & Tamiya (1978) Biochem. J. 175, 507-517] on the basis of identity of the tryptic peptide 'map' and the amino acid composition of each peptide. The amino acid sequence of toxin Hydrophis lapemoides a was determined mainly on the basis of identity of the amino acid compositions, mobilities on paper electrophoresis and migration positions on paper chromatography of the tryptic peptides with those of other sea-snake toxins whose sequences are known. Both toxins Hydrophis ornatus a and Hydrophis lapemoides a consisted of 60 amino acid residues and there were six amino acid replacements between them. The taxonomy of sea snakes in the Hydrophis ornatus complex has long been confused, and the above snakes were originally assigned to taxa that proved to be inconsistent with the relationships indicated by the neurotoxin amino acid sequences obtained. A subsequent re-examination of the specimens revealed an error in the original identifications and demonstrated the value of the protein amino acid sequences in systematic and phylogenetic studies. The isolation procedure and results of amino acid analysis of the tryptic peptides have been deposited as Supplementary Publication SUP 50121 (8 pages) with the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained as indicated in Biochem. J. (1983) 209, 5.  相似文献   

2.
The intestinal microbiota is a complicated ecosystem that influences many aspects of host physiology (i.e. diet, disease development, drug metabolism, and regulation of the immune system). It also exhibits spatial patterning and temporal dynamics. In this review, the effects of internal and external (environmental) factors on intestinal microbiota are discussed. We describe the roles of the gut microbiota in maintaining intestinal and immune system homeostasis and the relationship between gut microbiota and diseases. In particular, the contributions of polysaccharides, as the most abundant diet components in intestinal microbiota and host health are presented. Finally, perspectives for research avenues relating to gut microbiota are also discussed.  相似文献   

3.
《遗传学报》2021,48(9):792-802
Gut microbial dysbiosis has been linked to many noncommunicable diseases. However, little is known about specific gut microbiota composition and its correlated metabolites associated with molecular signatures underlying host response to infection. Here, we describe the construction of a proteomic risk score based on 20 blood proteomic biomarkers, which have recently been identified as molecular signatures predicting the progression of the COVID-19. We demonstrate that in our cohort of 990 healthy individuals without infection, this proteomic risk score is positively associated with proinflammatory cytokines mainly among older, but not younger, individuals. We further discover that a core set of gut microbiota can accurately predict the above proteomic biomarkers among 301 individuals using a machine learning model and that these gut microbiota features are highly correlated with proinflammatory cytokines in another independent set of 366 individuals. Fecal metabolomics analysis suggests potential amino acid-related pathways linking gut microbiota to host metabolism and inflammation. Overall, our multi-omics analyses suggest that gut microbiota composition and function are closely related to inflammation and molecular signatures of host response to infection among healthy individuals. These results may provide novel insights into the cross-talk between gut microbiota and host immune system.  相似文献   

4.
Wu S  Wang G  Angert ER  Wang W  Li W  Zou H 《PloS one》2012,7(2):e30440
Gut microbiota has become an integral component of the host, and received increasing attention. However, for many domestic animals, information on the microbiota is insufficient and more effort should be exerted to manage the gastrointestinal bacterial community. Understanding the factors that influence the composition of microbial community in the host alimentary canal is essential to manage or improve the microbial community composition. In the present study, 16S rRNA gene sequence-based comparisons of the bacterial communities in the grass carp (Ctenopharyngodon idellus) intestinal contents and fish culture-associated environments are performed. The results show that the fish intestinal microbiota harbors many cellulose-decomposing bacteria, including sequences related to Anoxybacillus, Leuconostoc, Clostridium, Actinomyces, and Citrobacter. The most abundant bacterial operational taxonomic units (OTUs) in the grass carp intestinal content are those related to feed digestion. In addition, the potential pathogens and probiotics are important members of the intestinal microbiota. Further analyses show that grass carp intestine holds a core microbiota composed of Proteobacteria, Firmicutes, and Actinobacteria. The comparison analyses reveal that the bacterial community in the intestinal contents is most similar to those from the culture water and sediment. However, feed also plays significant influence on the composition of gut microbiota.  相似文献   

5.
Freshwater macroinvertebrates play key ecological roles in riverine food webs, such as the transfer of nutrients to consumers and decomposition of organic matter. Although local habitat quality drives macroinvertebrate diversity and abundance, little is known about their microbiota. In most animals, the microbiota provides benefits, such as increasing the rate at which nutrients are metabolized, facilitating immune system development, and defending against pathogenic attack. Our objectives were to identify the bacteria within aquatic invertebrates and determine whether their composition varied with taxonomy, habitat, diet, and time of sample collection. In 2016 and 2017, we collected 264 aquatic invertebrates from the mainstem Saint John (Wolastoq) River in New Brunswick, Canada, representing 15 orders. We then amplified the V3‐V4 hypervariable region of the 16S rRNA gene within each individual, which revealed nearly 20,000 bacterial operational taxonomic units (OTUs). The microbiota across all aquatic invertebrates were dominated by Proteobacteria (69.25% of the total sequence reads), but they differed significantly in beta diversity, both among host invertebrate taxa (genus‐, family‐, and order‐levels) and temporally. In contrast to previous work, we observed no microbiota differences among functional feeding groups or traditional feeding habits, and neither water velocity nor microhabitat type structured microbiota variability. Our findings suggest that host invertebrate taxonomy was the most important factor in modulating the composition of the microbiota, likely through a combination of vertical and horizontal bacterial transmission, and evolutionary processes. This is one of the most comprehensive studies of freshwater invertebrate microbiota to date, and it underscores the need for future studies of invertebrate microbiota evolution and linkages to environmental bacteria and physico‐chemical conditions.  相似文献   

6.
The human gut microbiota is a diverse and complex ecosystem that is involved in beneficial physiological functions as well as disease pathogenesis. Blastocystis is a common protistan parasite and is increasingly recognized as an important component of the gut microbiota. The correlations between Blastocystis and other communities of intestinal microbiota have been investigated, and, to a lesser extent, the role of this parasite in maintaining the host immunological homeostasis. Despite recent studies suggesting that Blastocystis decreases the abundance of beneficial bacteria, most reports indicate that Blastocystis is a common component of the healthy gut microbiome. This review covers recent finding on the potential interactions between Blastocystis and the gut microbiota communities and its roles in regulating host immune responses.  相似文献   

7.
王金星 《微生物学报》2018,58(5):760-772
对虾等甲壳类动物体内存在2个菌群:肠道菌群和血淋巴菌群。肠道菌群的种类和数量较多,而血淋巴菌群较少。两种菌群均包含益生菌和致病菌,在宿主体内代谢、营养和免疫反应中发挥重要功能。肠道菌群动态平衡的调控主要通过双氧化酶产生的活性氧来完成;血淋巴菌群通过C-型凝集素调控的抗菌肽表达及酚氧化酶原激活系统来维持其动态平衡。阐明对虾等甲壳类体内菌群的组成、功能和动态平衡调控的机理,可以为对虾等经济甲壳类健康养殖的微生态制剂开发和疾病控制提供指导。  相似文献   

8.
Irritable Bowel Syndrome (IBS) is a common condition that negatively impacts the quality of life for many individuals. The exact etiology of this disorder is largely unknown; however, emerging studies suggest that the gut microbiota is a contributing factor. Several clinical trials show that probiotics, such as VSL#3, can have a favorable effect on IBS. This double-blind, randomized placebo-controlled study has been conducted in diarrhea-predominant IBS subjects in order to investigate the effect of VSL#3 on the fecal microbiota. The bacterial composition of the fecal microbiota was investigated using high-throughput microarray technology to detect 16S RNA. Twenty four subjects were randomized to receive VSL#3 or placebo for 8 weeks. IBS symptoms were monitored using GSRS and quality of life questionnaires. A favorable change in Satiety subscale was noted in the VSL #3 groups. However, the consumption of the probiotic did not change the gut microbiota. There were no adverse events or any safety concerns encountered during this study. To summarize, the use of VSL#3 in this pilot study was safe and showed improvement in specific GSRS-IBS scores in diarrhea-predominant IBS subjects. The gut microbiota was not affected by VSL#3 consumption suggesting that the mechanism of action is not directly linked to the microbiota.  相似文献   

9.
肠道微生物与宿主之间相互选择,构成了一个相对稳定的超有机体。宿主基因型和遗传关系影响肠道微生物的生态学特征,而肠道微生物发酵肠道内多糖,为宿主提供可吸收利用的养分,增强肠道对养分吸收的能力。同时,肠道微生物还影响一些转录因子的活性,调控宿主基因的表达,增强宿主甘油三酯的合成和脂肪沉积,减少脂肪酸氧化分解,调控宿主能量代谢。  相似文献   

10.
The role of dietary fiber in supporting healthy gut microbiota and overall well-being of the host has been revealed in several studies. Here, we show the effect of a bacterial polyfructan levan on the growth dynamics and metabolism of fecal microbiota in vitro by using isothermal microcalorimetry. Eleven fecal samples from healthy donors were incubated in phosphate-buffered defined medium with or without levan supplementation and varying presence of amino acids. The generation of heat, changes in pH and microbiota composition, concentrations of produced and consumed metabolites during the growth were determined. The composition of fecal microbiota and profile of metabolites changed in response to substrate (levan and amino acids) availability. The main products of levan metabolism were acetic, lactic, butyric, propionic and succinic acids and carbon dioxide. Associated growth of levan-degrading (e.g. Bacteroides) and butyric acid-producing (e.g. Faecalibacterium) taxa was observed in levan-supplemented media. The study shows that the capacity of levan and possibly also other dietary fibers/prebiotics to modulate the composition and function of colon microbiota can be predicted by using isothermal microcalorimetry of fecal samples linked to metabolite and consortia analyses.  相似文献   

11.
作为三大主要营养物质之一,膳食脂肪为人体提供能量和营养。膳食脂肪摄入不当会破坏肠道微生物的稳态,影响宿主的代谢状况,增加慢性疾病发生的风险。建立疾病动物模型是研究肠道微生物与宿主健康的重要手段。文中综述了膳食脂质的数量和种类、肠道微生物和宿主代谢之间的相互作用及其可能的作用机制,阐述了基于不同的疾病动物模型,膳食脂质影响肠道微生物的结构和功能,以及对宿主代谢的调节,为深入了解膳食脂质、肠道微生态和宿主健康三者之间的关系提供了依据。  相似文献   

12.
Gut microbiota plays important roles in host nutrition, metabolism and immunity, and is affected by multiple factors. However, the understandings of the gut microbiota in pigs within different breeds, growth periods and genders from a large cohort remain largely undefined. In the present study, the characteristics of the gut microbiota in 120 pigs of different breeds, growth periods and genders were investigated using the Illumina MiSeq PE300 combined with QIIME2 platform. A total of 7 388 636 raw reads and 16 411 features were obtained. Additionally, the microbial diversity, compositions and phenotypes were described. 66.53% microbiota belonged to the top 10 most abundant genera (pan gut bacteria), and 28 species were commonly identified (core gut bacteria, commonality ≥ 75%) among the pigs. Besides, the correlations within pan and core gut microbiota were firstly investigated. The metagenomic function was predicted by using PICRUSt2. Furthermore, the explanatory effects of the influencing factors suggested that growth period was the greatest contributor to the gut microbiota in pigs. These results expanded our knowledge of mammalian gut microbiota within different influencing factors and microbial-related biological features in swine, which contributes to improving animal production and assisting animal model research.  相似文献   

13.
肠道菌群是一个与人体共生的复杂微生物区系,近年来被越来越多的研究者所关注。研究发现,肠道菌群不仅在维持人体正常生理功能中起到重要作用,在肿瘤发生、发展、诊断及治疗中也有不可忽视的作用。本文在对肠道菌群与肿瘤关系进行概述的基础上,重点介绍了肠道菌群促进肿瘤发生、发展的主要机制,以及肠道菌群对抗肿瘤免疫治疗尤其是免疫检查点抑制疗法的影响。此外,文中还总结了目前可行的调节肠道菌群以提高肿瘤治疗疗效的方法,并提出了其中可能存在的困难和挑战。  相似文献   

14.
15.

Background

Murine models are a crucial component of gut microbiome research. Unfortunately, a multitude of genetic backgrounds and experimental setups, together with inter-individual variation, complicates cross-study comparisons and a global understanding of the mouse microbiota landscape. Here, we investigate the variability of the healthy mouse microbiota of five common lab mouse strains using 16S rDNA pyrosequencing.

Results

We find initial evidence for richness-driven, strain-independent murine enterotypes that show a striking resemblance to those in human, and which associate with calprotectin levels, a marker for intestinal inflammation. After enterotype stratification, we find that genetic, caging and inter-individual variation contribute on average 19%, 31.7% and 45.5%, respectively, to the variance in the murine gut microbiota composition. Genetic distance correlates positively to microbiota distance, so that genetically similar strains have more similar microbiota than genetically distant ones. Specific mouse strains are enriched for specific operational taxonomic units and taxonomic groups, while the ''cage effect'' can occur across mouse strain boundaries and is mainly driven by Helicobacter infections.

Conclusions

The detection of enterotypes suggests a common ecological cause, possibly low-grade inflammation that might drive differences among gut microbiota composition in mammals. Furthermore, the observed environmental and genetic effects have important consequences for experimental design in mouse microbiome research.  相似文献   

16.
We describe and interpret the functional morphology of skin of the Yellow-bellied sea snake, Hydrophis platurus. This is the only pelagic sea snake, and its integument differs from what is known for other species of snakes. In gross appearance, the scales of H. platurus consist of non-overlapping, polygonal knobs with flattened outer surfaces bearing presumptive filamentous sensillae. The deep recesses between scales (‘hinge’) entrap and wick water over the body surface, with mean retention of 5.1 g/cm of skin surface, similar to that determined previously for the roughened, spiny skin of marine file snakes, Acrochordus granulatus. This feature possibly serves to maintain the skin wet when the dorsal body protrudes above water while floating on calm oceanic slicks where they forage. In contrast with other snakes, including three species of amphibious, semi-marine sea kraits (Laticauda spp.), the outer corneous β-protein layer consists of a syncytium that is thinner than seen in most other species. The subjacent α-layer is also thin, and lipid droplets and lamellar bodies are seen among the immature, cornifying α-cells. A characteristic mesos layer, comprising the water permeability barrier, is either absent or very thin. These features are possibly related to (1) permeability requirements for cutaneous gas exchange, (2) reduced gradient for water efflux compared with terrestrial environments, (3) less need for physical protection in water compared with terrestrial ground environments, and (4) increased frequency of ecdysis thought to be an anti-fouling mechanism. The lipogenic features of the α-layer possibly compensate for the reduced or absent mesos layer, or produce layers of cells that comprise what functionally might be termed a mesos layer, but where the organization of barrier lipids nonetheless appears less robust than what is characteristically seen in squamates.  相似文献   

17.
The normal intestinal microflora (microbiota) represents a complex, dynamic, and diverse collection of microorganisms, which usually inhabit the gastrointestinal tract. Normally, between this flora and the human host a mutually beneficial long-term symbiotic relationship is established, where the host contributes essential nutrients necessary for the survival of the microbiota and the latter fulfils multiple roles in host nutrition and development. Several achievements have recently converged to renew interest in studying the normal gut microbiota: the development of molecular methods of studying the microbial communities, the improved understanding of host-microbe interactions in health and disease, and the potential for therapeutic manipulation of the microbiota. We present recent data concerning the molecular technologies of studying the microbiota and new findings regarding the composition of the normal flora. We underline the beneficial activities of the gut flora on the human host. We emphasize the recent findings in the alterations of the microbiota in various medical conditions (celiac disease, irritable bowel syndrome, obesity, colorectal cancer, allergic disorders, and especially inflammatory bowel diseases). The results of these new studies suggest that changes of the microbiota could be linked to the etiopathogenesis of these diseases. These outstanding findings could be used for further diagnostic tools and/or therapy.  相似文献   

18.
Research on gut microbiota of phytophagous insects has shown to be important for the physiological functions of insect hosts; however, little is known about the changes in gut microbiota when they are suffering from environmental stress or pathogen infections. During rearing of Phasmotaenia lanyuhensis (Phasmatodea: Phasmatidae), sluggish locomotion was usually followed by the death of the insect with a symptom of melanization in the front part of the abdomen. Therefore, the abnormal individuals were initially classified into moribund, light- and serious-symptom based on the level of abnormal physiological circumstances and melanization. The gut microbiota of these samples were further investigated by 16S metagenomic sequencing and the differences in bacterial abundance and structure of bacterial community were analyzed. A decrease in microbiota diversity was observed in the diseased P. lanyuhensis, with the abundance of phyla Proteobacteria and Firmicute relatively higher compared to those without symptom. Interestingly, principal component analysis based on the bacterial richness was correlated to the level of melanization symptom in the diseased P. lanyuhensis, suggested the change in bacterial microbiota involved in this abnormal circumstance. However, the factor that caused the initial alternation of microbiota remains to be identified. Additionally, the lack of bacterial diversity (i.e., absence of Meiothermus and Nubsella spp.) in P. lanyuhensis might reduce the fitness for surviving. This report provided the comprehensive microbiota analysis for P. lanyuhensis and concluded that either the relative abundance or the bacterial diversity of microbiota in the insect digestive system may influence the physiological functions of phytophagous insects.  相似文献   

19.
蜜蜂是对农业生产十分重要的授粉昆虫。蜜蜂肠道微生物与蜜蜂健康有密切关系,但肠道微生物也会受多种外界因素的影响。本文就蜜蜂疾病、抗生素等蜂病治疗药物、农药,以及益生菌的应用等对意大利蜜蜂工蜂肠道微生物影响的研究进行了归纳总结,并对蜜蜂与其肠道菌关系研究进行了展望。  相似文献   

20.
为获得分子量小、毒性低的抗感染多肽药物先导分子,以来源于青环海蛇的cathelicidin家族抗菌肽Hc-CATH为模板,设计了长度分别为16和15个氨基酸残基的改造体Hc-16和Hc-15,并通过CCK8实验、最小抑菌浓度 (Minimal inhibitory concentration,MIC) 实验、ELISA实验和生物膜干涉技术 (Bio-layer interferometry,BLI),对其进行毒性、抗菌活性、抗炎活性及LPS中和活性筛选。结果显示,两种改造体中,Hc-16对包括临床耐药菌在内的病原体具有广谱抗菌活性,最小抑菌浓度仅为4.69 μg/mL。同时抑制了LPS诱导的炎症因子TNF-α、IL-6的表达,显著降低感染诱发的炎症反应及细胞毒性。此外,构效关系研究表明C-、N-两端的苯丙氨酸在Hc-16抗菌抗炎活性中起着至关重要的作用。综上,Hc-16改造肽相比原模板具有更高的抗菌抗炎活性、更低的毒性以及更小的分子量,因而具有成本低、更好的成药性优势和较好的临床应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号