首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Interspecific interactions and soil nitrogen supply levels affect intercropping productivity. We hypothesized that interspecific competition can be alleviated by increasing N application rate and yield advantage can be obtained in competitive systems. A field experiment was conducted in Wuwei, Gansu province in 2007 and 2008 to study intercropping of faba bean/maize, wheat/maize, barley/maize and the corresponding monocultures of faba bean (Vicia faba L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and maize (Zea mays L.) with N application rates of 0, 75, 150, 225 and 300 kg N ha?1. Total land equivalent ratios (TLER) were 1.22 for faba bean/maize, 1.16 for wheat/maize, and 1.13 for barley/maize intercropping over the 2-year study period. Maize was overyielding when intercropped with faba bean, but underyielding when intercropped with wheat or barley according to partial land equivalent ratios (PLER) based on grain yields of individual crops in intercropping and sole cropping. There was an interspecific facilitation between intercropped faba bean and maize, and interspecific competition between maize and either wheat or barley. The underyielding of maize was higher when intercropped with barley than with wheat. Fertilizer N alleviated competitive interactions in intercrops with adequate fertilizer N at 225 kg ha?1. Yield advantage of intercropping can be acquired with adequate nitrogen supply, even in an intensive competitive system such as barley/maize intercropping. This is important when using intercropping to develop intensive farming systems with high inputs and high outputs.  相似文献   

2.
Root distribution and interactions between intercropped species   总被引:28,自引:0,他引:28  
Li L  Sun J  Zhang F  Guo T  Bao X  Smith FA  Smith SE 《Oecologia》2006,147(2):280-290
Even though ecologists and agronomists have considered the spatial root distribution of plants to be important for interspecific interactions in natural and agricultural ecosystems, few experimental studies have quantified patterns of root distribution dynamics and their impacts on interspecific interactions. A field experiment was conducted to investigate the relationship between root distribution and interspecific interactions between intercropped plants. Roots were sampled twice by auger and twice by the monolith method in wheat (Triticum aestivum L.)/maize (Zea mays L.) and faba bean (Vicia faba L.)/maize intercropping and in sole wheat, maize, and faba bean up to 100 cm depth in the soil profile. The results showed that the roots of intercropped wheat spread under maize plants, and had much greater root length density (RLD) at all soil depths than sole wheat. The roots of maize intercropped with wheat were limited laterally, but had a greater RLD than sole-cropped maize. The RLD of maize intercropped with faba bean at different soil depths was influenced by intercropping to a smaller extent compared to maize intercropped with wheat. Faba bean had a relatively shallow root distribution, and the roots of intercropped maize spread underneath them. The results support the hypotheses that the overyielding of species showing benefit in the asymmetric interspecific facilitation results from greater lateral deployment of roots and increased RLD, and that compatibility of the spatial root distribution of intercropped species contributes to symmetric interspecific facilitation in the faba bean/maize intercropping. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
李玉英 《生态学报》2011,31(6):1617-1630
为河西走廊绿洲灌区豆科/禾本科间作体系的养分管理提供科学依据,于2007年在武威绿洲农业试验站应用田间原位根系行分隔技术研究了蚕豆/玉米种间互作和施氮对玉米抽雄期的根系空间分布、根系形态和作物地上部生长的影响。研究结果表明:种间互作和施氮均增加了玉米和蚕豆在纵向和横向两个尺度上的根重密度、根长密度、根表面积、根系体积。根长密度和根表面积与两种作物产量和氮素吸收均呈正相关,而与蚕豆的根瘤重呈负相关;抽雄期的土壤含水量与玉米产量和养分吸收呈显著的负相关。玉米根系可以占据蚕豆地下部空间,但蚕豆的根却较少到间作玉米的地下部空间,也就是间作后增加了玉米根系水平尺度的生态位。蚕豆和玉米根系主要分布分别在0-40 cm浅土层和0-60 cm 土层,且间作玉米根系在60-120 cm比单作和分隔的多。因此,种间互作和施氮扩大了两作物根系纵向和横向的空间生态位,改变了作物根系形态,即扩展了两者水分和养分吸收的生态位,增加了作物吸收养分的有效空间,从而提高了间作生态系统的生产力。  相似文献   

4.
Zhang  Fusuo  Li  Long 《Plant and Soil》2003,248(1-2):305-312
This paper reviews recent research on the processes involved in the yield advantage in wheat (Triticum aestivum L.)/maize (Zea mays L.), wheat/soybean [Glycine max (L.) Merr.], faba bean (Vicia faba L.)/maize, peanut (Arachis hypogaea L.)/maize and water convolvulus (Ipomoea aquatica Forsk.)/maize intercropping. In wheat/maize and wheat/soybean intercropping systems, a significant yield increase of intercropped wheat over sole wheat was observed, which resulted from positive effects of the border row and inner rows of intercropped wheat. The border row effect was due to interspecific competition for nutrients as wheat had a higher competitive ability than either maize or soybean had. There was also compensatory growth, or a recovery process, of subordinate species such as maize and soybean, offsetting the impairment of early growth of the subordinate species. Finally, both dominant and subordinate species in intercropping obtain higher yields than that in corresponding sole wheat, maize or soybean. We summarized these processes as the `competition-recovery production principle'. We observed interspecific facilitation, where maize improves iron nutrition in intercropped peanut, faba bean enhances nitrogen and phosphorus uptake by intercropped maize, and chickpea facilitates P uptake by associated wheat from phytate-P. Furthermore, intercropping reduced the nitrate content in the soil profile as intercropping uses soil nutrients more efficiently than sole cropping.  相似文献   

5.
Increasing crop nitrogen use efficiency while also simultaneously decreasing nitrogen accumulation in the soil would be key steps in controlling nitrogen pollution from agricultural systems. Long-term field experiments were started in 2003 to study the effects of intercropping on crop N use and soil mineral N accumulation in wheat (Triticum aestivum L. cv 2014)/maize (Zea mays L. cv Shendan16), wheat/faba bean (Vicia faba L. cv Lincan No. 5) and maize/faba bean intercropping and monocropping systems. Monocropping was compared with two types of strip intercropping: continuous intercropping (two crops intercropped continuously on the same strips of land every year) and rotational intercropping (two crops grown adjacently and rotated to the other crop??s strip every year). Maize/faba bean intercropping had greater crop N uptake than did wheat/faba bean or wheat/maize. Wheat/maize accumulated more mineral N in the top 140 cm of the soil profile during the co-growth stage from maize emergence to maturity of wheat or faba bean. Continuously intercropped maize substantially decreased soil mineral N accumulation under wheat and faba bean rows (60?C100 cm soil depth) at maize harvest. Soil mineral N accumulation under wheat rows increased with rotational intercropping with faba bean. Rotational intercropping may potentially alleviate the adverse effects of wheat on N use by other crops and increase the nitrogen harvest index of wheat, maize and faba bean. Intercropping using species with different maturity dates may be more effective in increasing crop N use efficiency and decreasing soil mineral N accumulation.  相似文献   

6.
A field experiment was carried out to quantify biological nitrogen fixation (BNF) using the 15N isotope natural abundance method in maize (Zea mays L.)/faba bean (Vicia faba L.) and wheat (Triticum aestivum L.)/faba bean intercropping systems. Faba bean was yielding more in the maize/faba bean intercropping, but not in the wheat/faba bean intercropping. Biomass, grain yield and N acquisition of faba bean were significantly increased when intercropped with maize, and decreased significantly with wheat, irrespective of N-fertilizer application, indicating that the legume could gain or lose productivity in an intercropping situation. There was yield advantage of maize/faba bean intercropping, but no in wheat/faba bean intercropping. The grain yield of the faba bean intercropped with maize was greater than that of faba bean monoculture due to increases of the stems per plant and the pods per stem of faba bean. N fertilization inhibited N fixation of faba bean in maize/faba bean and wheat/faba bean intercropping and faba bean monoculture. The responses of different cropping systems to N-fertilizer application, however, were not identical, with competitive intercropping (wheat/faba bean) being more sensitive than facilitative intercropping (maize/faba bean). Intercropping increased the percentage of N derived from air (%Ndfa) of the wheat/faba bean system, but not that of the maize/faba bean system when no N fertilizer was applied. When receiving 120 kg N/ha, however, intercropping did not significantly increase %Ndfa either in the wheat/faba bean system or in the maize/faba bean system in comparison with faba bean in monoculture. The amount of shoot N derived from air (Ndfa), however, increased significantly when intercropped with maize, irrespective of N-fertilizer application. Ndfa decreased when intercropped with wheat, albeit not significantly at 120 kg N/ha. Ndfa was correlated more closely with dry matter yield, grain yield and competitive ratio, than with %Ndfa. This indicates that that total dry matter yield (sink strength), not %Ndfa, was more critical for the legume to increase Ndfa. The results suggested that N fixation could be improved by yield maximization in an intercropping system.  相似文献   

7.
苗锐  张福锁  李隆 《植物学报》2009,44(2):197-201
本实验选取3种对土壤氮素竞争能力不同的禾本科作物大麦(Hordeum vulgare)、小麦(Triticum aestivum)和玉米(Zea mays)分别与蚕豆(Vicia faba)间作, 建立对土壤氮素竞争能力不同的作物组合; 并采用3种分隔方式(塑料膜分隔、尼龙网分隔和无分隔)建立同一作物组合条件下作物种间根系相互作用的不同强度, 来研究不同作物组合及种间根系相互作用强度对蚕豆结瘤的影响。结果如下: (1)蚕豆的结瘤并未随3种禾本科作物氮素竞争能力的增强而增加, 但是3种间作体系蚕豆的结瘤却均表现出无分隔处理多于塑料膜分隔处理, 即同一间作体系种间根系相互作用越强, 越有利于蚕豆结瘤的产生, 存在种间互利作用; (2)在玉米/蚕豆间作体系中, 无分隔处理的蚕豆根瘤数目和根瘤重显著高于塑料膜分隔处理, 分别高出67.5%和70.1%; 在大麦/蚕豆间作体系中也表现出无分隔处理的根瘤重显著高于塑料膜分隔处理(高出46.3%); (3)玉米/蚕豆间作体系与小麦/蚕豆和大麦/蚕豆间作体系相比, 无分隔处理时土壤氮素含量显著高于后2个间作体系, 但是玉米/蚕豆间作体系对蚕豆结瘤的促进作用更强。上述结果表明, 在蚕豆/玉米间作体系中, 玉米促进蚕豆生物固氮除了氮素竞争机制外, 还可能存在其它机制。  相似文献   

8.
Liao  Dan  Zhang  Chaochun  Li  Haigang  Lambers  Hans  Zhang  Fusuo 《Plant and Soil》2020,448(1-2):587-601
Aims

This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean intercropping system on dynamic changes in soil P pool.

Methods

Maize and faba bean were grown in P-accumulated soil as either sole cropping or intercropping. After one year (Stage I) or four years (Stage II) of no P application, soil samples were collected respectively and analyzed for soil P pools using sequential fractionation. Aboveground biomass and P content were annually measured from 2013 to 2016 to assess the annual P balance.

Results

The intercropped maize/faba bean system showed a P-uptake advantage, with a Land Equivalent Ratio (LER) ranging from 1.2 to 1.5. The average shoot P content over the four years in intercropped maize and faba bean was significantly greater than that of the corresponding sole crops by 29% and 30%, respectively. Over the three-year P depletion period, the three cropping systems primarily depleted the 1 M HCl-Pi fraction, followed by sole maize, which depleted the NaOH-Pi and concentrated HCl-Po fractions. Sole faba bean depleted the alkali-soluble Po fraction (extracted by NaHCO3 and NaOH), and the intercropped maize/faba bean system depleted the conc. HCl-Po fraction, which was similar to the effect of sole maize.

Conclusions

Both sole crops and intercrops mainly depleted 1 M HCl-Pi, but differed in Po depletion. Sole maize and maize/faba bean intercropping depleted the sparingly labile Po fraction, while sole faba bean depleted the labile and moderately labile Po fractions.

  相似文献   

9.
Interspecific root/rhizosphere interactions affect phosphorus (P) uptake and the productivity of maize/faba bean and maize/wheat intercropping systems. The aim of these experiments was to determine whether manipulation of maize root growth could improve the productivity of the two intercropping systems. Two near isogenic maize hybrids (the larger-rooted T149 and smaller-rooted T222) were intercropped with faba bean and wheat, under conditions of high- and low-P availability. The larger-rooted T149 showed greater competitive ability than the smaller-rooted T222 in both maize/faba bean and maize/wheat intercropping systems. The higher competitive ability of T149 improved the productivity of the maize/faba bean intercropping system in P-sufficient conditions. In maize/wheat intercropping systems, root growth, shoot biomass, and P uptake of maize were inhibited by wheat, regardless of the P-supply. Compared with T222, the larger-rooted T149 suffered less in the intercropping systems. The total biomass of the maize/wheat intercropping system was higher for wheat/T149 than for wheat/T222 under low-P conditions. These data suggested that genetic improvement of maize root size could enhance maize growth and its ability to compete for P resources in maize/faba bean and maize/wheat intercropping systems. In addition, depending on the P availability, larger maize roots could increase the productivity of intercropping systems.  相似文献   

10.
小麦/蚕豆间作作物生长曲线的模拟及种间互作分析   总被引:3,自引:0,他引:3  
物种间的相互作用与间作产量优势的形成密切相关,但很少有人注意到种间互作动态.本研究通过2年田间定位试验,运用Logistic分析模拟了不同种植模式(小麦单作、蚕豆单作和小麦/蚕豆间作)和不同磷水平下[P0,施磷量(P2O5)为0 kg·hm-2(对照);P1,施磷量(P2O5)为45 kg·hm-2;P2,施磷量(P2O5)为90 kg·hm-2]单间作小麦、蚕豆的生长模型,分析了作物种间互作的动态变化.结果表明: 小麦/蚕豆间作使小麦产量提高了10.5%~18.6%,蚕豆产量却降低了4.8%~12.3%,但间作系统仍具有产量优势,土地当量比(LER)和相对拥挤系数(K)分别为1.01~1.15 和1.12~3.20.小麦和蚕豆的产量及关键生长参数均受磷水平调控,但LER和K并不受磷水平影响.与单作相比,间作小麦的最大生长速率(Rmax)和最初生长速率(r)分别提高21.8%~38.7%和20.7%~38.9%,但间作对蚕豆的关键生长参数无影响.在小麦、蚕豆的生长初期,不同磷水平下,单间作作物的生长曲线无差异;间作群体以种间竞争为主,无间作生物量优势(LER<1,K<1).当蚕豆达到最大生长速率(Tmax)后,间作显著提高了小麦的生长速率,降低了小麦的种内竞争压力,表现出间作生物量和产量优势(LER>1,K>1).总之,在不同的生长发育阶段,小麦、蚕豆的相互作用不同,间作提高了中后期小麦的生长速率,为间作优势的形成奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号