首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individual mice have a unique odor, or odortype, that facilitates individual recognition. Odortypes, like other phenotypes, can be influenced by genetic and environmental variation. The genetic influence derives in part from genes of the major histocompatibility complex (MHC). A major environmental influence is diet, which could obscure the genetic contribution to odortype. Because odortype stability is a prerequisite for individual recognition under normal behavioral conditions, we investigated whether MHC-determined urinary odortypes of inbred mice can be identified in the face of large diet-induced variation. Mice trained to discriminate urines from panels of mice that differed both in diet and MHC type found the diet odor more salient in generalization trials. Nevertheless, when mice were trained to discriminate mice with only MHC differences (but on the same diet), they recognized the MHC difference when tested with urines from mice on a different diet. This indicates that MHC odor profiles remain despite large dietary variation. Chemical analyses of urinary volatile organic compounds (VOCs) extracted by solid phase microextraction (SPME) and analyzed by gas chromatography/mass spectrometry (GC/MS) are consistent with this inference. Although diet influenced VOC variation more than MHC, with algorithmic training (supervised classification) MHC types could be accurately discriminated across different diets. Thus, although there are clear diet effects on urinary volatile profiles, they do not obscure MHC effects.  相似文献   

2.
A potential strategy for diagnosing lung cancer, the leading cause of cancer-related death, is to identify metabolic signatures (biomarkers) of the disease. Although data supports the hypothesis that volatile compounds can be detected in the breath of lung cancer patients by the sense of smell or through bioanalytical techniques, analysis of breath samples is cumbersome and technically challenging, thus limiting its applicability. The hypothesis explored here is that variations in small molecular weight volatile organic compounds (“odorants”) in urine could be used as biomarkers for lung cancer. To demonstrate the presence and chemical structures of volatile biomarkers, we studied mouse olfactory-guided behavior and metabolomics of volatile constituents of urine. Sensor mice could be trained to discriminate between odors of mice with and without experimental tumors demonstrating that volatile odorants are sufficient to identify tumor-bearing mice. Consistent with this result, chemical analyses of urinary volatiles demonstrated that the amounts of several compounds were dramatically different between tumor and control mice. Using principal component analysis and supervised machine-learning, we accurately discriminated between tumor and control groups, a result that was cross validated with novel test groups. Although there were shared differences between experimental and control animals in the two tumor models, we also found chemical differences between these models, demonstrating tumor-based specificity. The success of these studies provides a novel proof-of-principle demonstration of lung tumor diagnosis through urinary volatile odorants. This work should provide an impetus for similar searches for volatile diagnostic biomarkers in the urine of human lung cancer patients.  相似文献   

3.
Genes of the major histocompatibility complex (MHC), which play a critical role in immune recognition, influence mating preference and other social behaviors in mice. Training experiments using urine scent from mice differing only in the MHC complex, from MHC class I mutants or from knock-out mice lacking functional MHC class I molecules (beta2m-deficient), suggest that these behavioral effects are mediated by differences in MHC-dependent volatile components. In search for the physical basis of these behavioral studies, we have conducted a comparison of urinary volatiles in three sub-strains of C57BL/6 mice, a beta2m-deficient mutant lacking functional MHC class I expression and two unrelated inbred strains, using the technique of sorptive extraction with polydimethylsiloxan and subsequent analysis by gas chromatography/mass spectrometry. We show (i) that qualitative differences occur between different inbred strains but not in mice with the C57BL/6 background, (ii) that the individual variability in abundance in the same mouse strain is strongly component-dependent, (iii) that C57BL/6 sub-strains obtained from different provenance show a higher fraction of quantitative differences than a sub-strain and its beta2m-mutant obtained from the same source and (iv) that comparison of the spectra of beta2m mice and the corresponding wild type reveals no qualitative differences in close to 200 major and minor components and only minimal differences in a few substances from an ensemble of 69 selected for quantitative analysis. Our data suggest that odor is shaped by ontogenetic, environmental and genetic factors, and the gestalt of this scent may identify a mouse on the individual and population level; but, within the limits of the ensemble of components analysed, the results do not support the notion that functional MHC class I molecules influence the urinary volatile composition.  相似文献   

4.
Genes of the major histocompatibility complex (MHC) influence the urinary odors of mice. Behavioral studies have shown (1) that mice differing only at MHC have distinct urinary odors, suggesting an MHC odor phenotype or odortype; (2) that the MHC odortype can be recognized across different background strains; and (3) that the MHC odortype is not an additive trait. Very little is known about the odorants underlying this behavioral phenotype. We compared urinary volatile profiles of two MHC haplotypes (H2b and H2k) and their heterozygous cross (H2b×H2k) for two different background strains (C57BL/6J and BALB/c) using solid phase micro-extraction (SPME) headspace analysis and gas chromatography/mass spectrometry (GC/MS). Both MHC and background genes substantially influence the volatile profile. Of 148 compounds screened, 108 of them significantly differ between the six genotypes. Surprisingly, for numerous compounds, their MHC associations are moderated by background genes (i.e., there is a significant MHC × background interaction effect in the statistical model relating genotype to relative compound concentration). These interactions account for nearly 30% of the total genetic effect on the volatile profile. MHC heterozygosity further extends the odortype diversity. For many compounds, the volatile expression for the heterozygote is more extreme than the expression for either homozygote, suggesting a heterozygous-specific odortype. The remarkable breadth of effects of MHC variation on concentrations of metabolites and the interaction between MHC and other genetic variation implies the existence of as yet unknown processes by which variation in MHC genes gives rise to variation in volatile molecules in body fluids.  相似文献   

5.
Mice can recognize one another by individually characteristic phenotypic body odours (odourtypes) that reflect their genetic constitution at the highly polymorphic major histocompatibility complex (MHC) of genes on chromosome 17. We have shown previously that MHC-determined odours are produced by fetuses: house mice, Mus domesticus, can be trained to discriminate between genetically identical pregnant females carrying 9-18-day-old fetuses of differing MHC type. Theoretically, it should be possible for a mouse to determine the MHC type of the sire based on the odourtype of the pregnant female. In the current study we investigated whether untrained male mice show spontaneous discrimination between such pregnant mice. In experiment 1, sexually inexperienced male mice spent more time near pregnant females that carried fetuses most genetically different from the males themselves. Experiment 2, designed to evaluate possible experiential effects on this preference, tested males that were cohabiting and had impregnated a female that was either genetically identical to the test male (excepting X and Y chromosomes) or differed from him only at the MHC. Males in the former case performed virtually identically to those tested in experiment 1. In contrast males in the latter group did not display this preference. These studies reveal that among untrained male mice, fetal MHC type influences choice behaviour presumably via fetal odourtypes expressed in maternal secretions/excretions and that previous housing and/or mating experience modulates male choice. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

6.
It is well known that herbivorous insects respond to host plant volatiles. Yet details of how these insects perceive the complex profile of volatiles from different potential host plants have not been studied for most insects. Gonipterus spp. are important pests of Eucalyptus worldwide, but differ in their preference for different species of this host. In this study, we consider whether host volatiles affect the host choice for a Gonipterus sp. and we characterize the response of the female insect to the volatile profiles from these hosts in an electro-antennographic experiment. We sampled volatiles from freshly damaged leaves of three Eucalyptus species and analysed the profiles by gas chromatography coupled to electro-antennography (GC-EAD) and gas chromatography coupled to mass spectrometry. Female weevils gave a mixed range of electro-physiological responses to volatile puffs from leaves of different tree species. This suggests that differences in volatile profiles of different trees play a role in how these beetles discriminate between potential hosts. GC-EAD analysis showed that responses were as complex as the volatile chemical compositions of the leaves. A number of these chemicals were identified, and responses were mostly due to general green leaf volatiles. This was also evident from the fact that the insects showed a markedly greater response to the total volatile profile from freshly damaged leaves for all species. The females of the Gonipterus sp. can therefore detect damaged leaves, which may indicate host quality. Host specificity information is further expected to lie in the relative differences in emission ratios and synergism between different host chemical compounds, rather than specific individual compounds.  相似文献   

7.
Floral scents are important signals for communication between plants and pollinators. Several studies have focused on interspecific variation of these signals, but little is known about intraspecific variation in flower scent, particularly for species with wide geographic distributions. In the highly specific mutualism between Ficus species and their pollinating wasps, chemical mediation is crucial for partner encounter. Several studies show that scents, i.e. blends of volatiles, are species-specific, but no studies address interpopulation variation of scents in fig pollination mutualisms, which often have broad geographic distributions. In this study, using absorption/desorption headspace techniques, we analyzed variation in floral scent composition among three populations of each of two widely distributed Asian Ficus species. We identified more than 100 different volatile organic compounds, predominantly terpenes. In both species, significant differences were found between scent bouquets of East Asian and Indian populations. These differences are discussed in relation to geographical barriers that could disrupt gene exchange between these two areas, thereby isolating Indian populations from those of Eastern Asia.  相似文献   

8.
The major histocompatibility complex (MHC) is an extraordinarily diverse cluster of genes that play a key role in the immune system. MHC gene products are also found in various body secretions, leading to the suggestion that MHC genotypes are linked to unique individual odourtypes that animals use to assess the suitability of other individuals as potential mates or social partners. We investigated the relationship between chemical odour profiles and genotype in a large, naturally reproducing population of mandrills, using gas chromatography–mass spectrometry and MHC genotyping. Odour profiles were not linked to the possession of particular MHC supertypes. Sex influenced some measures of odour diversity and dominance rank influenced some measures of odour diversity in males, but not in females. Odour similarity was strongly related to similarity at the MHC, and, in some cases, to pedigree relatedness. Our results suggest that odour provides both a cue of individual genetic quality and information against which the receiver can compare its own genotype to assess genetic similarity. These findings provide a potential mechanism underlying mate choice for genetic diversity and MHC similarity as well as kin selection.  相似文献   

9.
Plants synthesize volatile compounds to attract pollinators. The volatiles emitted by flowers are often complex mixtures of organic compounds; pollinators are capable of distinctly recognizing different volatile compounds. Plants also produce volatile compounds to protect themselves against herbivores and pathogens. Some of the volatile compounds produced in floral and vegetative tissues are toxic to insects and microbes. To adapt changes in the environment, plants have evolved the ability to synthesize a unique set of volatiles. Intensive studies have identified and characterized the enzymes responsible for the formation of plant volatiles. In particular, many biosynthetic genes have been isolated and their enzymatic functions have been proposed. This review describes how plants have evolved the biosynthetic pathways leading to the formation of green leaf volatiles and phenylpropene volatiles.  相似文献   

10.
In response to feeding by phytophagous arthropods, plants emit volatile chemicals. This is shown to be an active physiological response of the plant and the released chemicals are therefore called herbivore-induced plant volatiles (HIPV). One of the supposed functions of HIPV for the plant is to attract carnivorous natural enemies of herbivores. Depending on which plant and herbivore species interact, blends of HIPV show qualitative and quantitative variation. Hence, one may ask whether this allows the natural enemies to discriminate between volatiles from plants infested by herbivore species that are either suitable or unsuitable as a food source for the natural enemy. Another question is whether natural enemies can also recognise HIPV when two or more herbivore species that differ in suitability as a food source simultaneously attack the same plant species. By reviewing the literature we show that arthropod predators and parasitoids can tell different HIPV blends apart in several cases of single plant–single herbivore systems and even in single plant–multiple herbivore systems. Yet, there are also cases where predators and parasitoids do not discriminate or discriminate only after having learned the association between HIPV and herbivores that are either suitable or non-suitable as a source of food. In this case, suitable herbivores may profit from colonising plants that are already infested by another non-suitable herbivore. The resulting temporal or partial refuge may have important population dynamical consequences, as such refuges have been shown to stabilise otherwise unstable predator–prey models of the Lotka-Volterra or Nicholson-Bailey type.  相似文献   

11.
12.
Self-pollination by plants gives rise to inbreeding depression. There is increasing recognition that plant inbreeding can have significant implications for interactions between plants and other organisms, including insects and pathogens. Many of these interactions are mediated by plant-derived volatiles, but the effects of inbreeding on volatile production have not previously been investigated. We examined variation in flower volatile production by the wild gourd Cucurbita pepo subsp. texana as a function of inbreeding, sex of the flower, and maternal line. We compared first-generation selfed progeny to outcrossed progeny to assess variation in blossom volatiles due to mating system. Our data indicate that self-pollination reduces total volatile production and changes the relative composition of individual compounds released by C. pepo subsp. texana blossoms. These findings have potentially important implications for interactions between C. pepo subsp. texana and its pollinators and herbivores-including diabroticite cucumber beetles, which vector the bacterial pathogen Erwinia tracheiphila-because previous studies have shown that a number of the individual compounds that vary with inbreeding level can influence insect behavior. We also found significant differences between the volatile profiles of male and female flowers and across maternal families.  相似文献   

13.
Genetic diversity is fundamental to maintaining the long‐term viability of populations, yet reduced genetic variation is often associated with small, isolated populations. To examine the relationship between demography and genetic variation, variation at hypervariable loci (e.g., microsatellite DNA loci) is often measured. However, these loci are selectively neutral (or near neutral) and may not accurately reflect genomewide variation. Variation at functional trait loci, such as the major histocompatibility complex (MHC), can provide a better assessment of adaptive genetic variation in fragmented populations. We compared patterns of microsatellite and MHC variation across three Eastern Massasauga (Sistrurus catenatus) populations representing a gradient of demographic histories to assess the relative roles of natural selection and genetic drift. Using 454 deep amplicon sequencing, we identified 24 putatively functional MHC IIB exon 2 alleles belonging to a minimum of six loci. Analysis of synonymous and nonsynonymous substitution rates provided evidence of historical positive selection at the nucleotide level, and Tajima's D provided support for balancing selection in each population. As predicted, estimates of microsatellite allelic richness, observed, heterozygosity, and expected heterozygosity varied among populations in a pattern qualitatively consistent with demographic history and abundance. While MHC allelic richness at the population and individual levels revealed similar trends, MHC nucleotide diversity was unexpectedly high in the smallest population. Overall, these results suggest that genetic variation in the Eastern Massasauga populations in Illinois has been shaped by multiple evolutionary mechanisms. Thus, conservation efforts should consider both neutral and functional genetic variation when managing captive and wild Eastern Massasauga populations.  相似文献   

14.
Plant volatiles serve as key foraging and oviposition cues for insect herbivores as well as their natural enemies, but little is known about how genetic variation within plant populations influences volatile-mediated interactions among plants and insects. Here, we explore how inbred and outbred plants from three maternal families of the native weed horsenettle (Solanum carolinense) vary in the emission of volatile organic compounds during the dark phase of the photoperiod, and the effects of this variation on the oviposition preferences of Manduca sexta moths, whose larvae are specialist herbivores of Solanaceae. Compared with inbred plants, outbred plants consistently released more total volatiles at night and more individual compounds—including some previously reported to repel moths and attract predators. Female moths overwhelmingly chose to lay eggs on inbred (versus outbred) plants, and this preference persisted when olfactory cues were presented in the absence of visual and contact cues. These results are consistent with our previous findings that inbred plants recruit more herbivores and suffer greater herbivory under field conditions. Furthermore, they suggest that constitutive volatiles released during the dark portion of the photoperiod can convey accurate information about plant defence status (and/or other aspects of host plant quality) to foraging herbivores.  相似文献   

15.
Variation in traits across species distribution ranges is often indicative of diversifying evolution that can lead to speciation. Of particular interest is whether traits vary clinally or abruptly because the latter pattern can be indicative of incipient speciation. Understanding of intraspecific variation in chemical traits is still in its infancy because studies of population variation have tended to focus on morphology or neutral genetic markers. To address these issues, the composition of cone volatile odours was examined in ten populations of the South African cycad Encephalartos villosus across its range in the Eastern Cape and KwaZulu Natal using headspace sampling and analysis by gas chromatography‐mass spectrometry. Because volatiles play a key role in attracting pollinators to cones of Encephalartos cycads and may thus reflect local adaptation to pollinators, pollinator assemblages were also investigated in the ten populations of E. villosus. Volatile compounds from populations in the north of the distribution range were dominated by unsaturated hydrocarbons, whereas, in the southern populations, nitrogen‐containing compound and terpenoids were the major compounds. A shift between southern and northern populations appeared to occur at the Umtamvuna River, where populations had odour profiles with components of both the northern and southern populations. However, one population in the north (Vernon Crookes Nature Reserve) had a quantitatively similar odour profile to the populations in the extreme south of the range. These results reveal strong interpopulation variation in the cone scent of E. villosus, including variation in the relative emission of dominant compounds that may play key functional role in this pollination system. However, pollinator assemblages did not differ across the different populations, which suggest that these patterns were produced by co‐evolution or drift, rather than by pollinator shifts. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 514–527.  相似文献   

16.
The narrow genetic base of commercial arabica resulting from intensive selection for quality during domestication and self-pollination has been well documented, raising the need for new diverse germplasm sources. Beans of 232 diverse arabica coffee accessions originating from 27 countries were harvested from the germplasm collection at CATIE, Costa Rica. Substantial variation was observed for bean morphology including 100 bean weight, bean length, width, thickness and bulk density. Non-volatiles including caffeine and trigonelline were analysed and showed larger variation in range than has previously been reported. Results of targeted analysis of 18 volatiles from 35 accessions also showed significant variation, with coefficients of variation from 140% for 4-vinylguaiacol to 62% for geraniol. There were strong correlations between some volatile compounds, suggesting that representative volatiles used in selection would save analytical costs. However, no strong correlation was found between bean morphology and the levels of non-volatile or volatile compounds, implying that it is difficult to select for low or high composition of these compounds based on bean physical characteristics. Utilizing the large variation observed for bean morphology and biochemical traits, it should be possible to select for desirable combinations of traits in arabica coffee breeding.  相似文献   

17.
Integrating floral scent, pollination ecology and population genetics   总被引:1,自引:1,他引:0  
1 . Floral scent is a key factor in the attraction of pollinators. Despite this, the role of floral scent in angiosperm speciation and evolution remains poorly understood. Modern population genetic approaches when combined with pollination ecology can open new opportunities for studying the evolutionary role of floral scent.
2 . A framework of six hypotheses for the application of population genetic tools to questions about the evolutionary role of floral scent is presented. When floral volatile chemistry is linked to pollinator attraction we can analyse questions such as: Does floral volatile composition reflect plant species boundaries? Can floral scent facilitate or suppress hybridization between taxa? Can the attraction of different pollinators influence plant mating systems and pollen-mediated gene flow? How is population genetic structure indirectly influenced by floral scent variation?
3 . The application of molecular tools in sexually deceptive orchids has confirmed that volatile composition reflects species boundaries, revealed the role of shared floral odour in enabling hybridization, confirmed that the sexual attraction mediated by floral odour has implications for pollen flow and population genetic structure and provided examples of pollinator-mediated selection on floral scent variation. Interdisciplinary studies to explore links between floral volatile variation, ecology and population genetics are rare in other plant groups.
4 . Ideal study systems for future floral scent research that incorporate population genetics will include closely related taxa that are morphologically similar, sympatric and co-flowering as well as groups that display wide variation in pollination mechanisms and floral volatiles.  相似文献   

18.
Individual animals frequently exhibit repeatable differences from other members of their population, differences now commonly referred to as ‘animal personality’. Personality differences can arise, for example, from differences in permanent environmental effects―including parental and epigenetic contributors―and the effect of additive genetic variation. Although several studies have evaluated the heritability of behaviour, less is known about general patterns of heritability and additive genetic variation in animal personality. As overall variation in behaviour includes both the among-individual differences that reflect different personalities and temporary environmental effects, it is possible for personality to be largely genetically influenced even when heritability of behaviour per se is quite low. The relative contribution of additive genetic variation to personality variation can be estimated whenever both repeatability and heritability are estimated for the same data. Using published estimates to address this issue, we found that approximately 52% of animal personality variation was attributable to additive genetic variation. Thus, while the heritability of behaviour is often moderate or low, the heritability of personality is much higher. Our results therefore (i) demonstrate that genetic differences are likely to be a major contributor to variation in animal personality and (ii) support the phenotypic gambit: that evolutionary inferences drawn from repeatability estimates may often be justified.  相似文献   

19.
A flight tunnel study was done to decipher the behavioral effect of grape odor in grapevine moth Lobesia botrana. A blend of 10 volatile compounds, which all elicit a strong antennal response, attracts mated grapevine moth females from a distance, by upwind orientation flight. These 10 grape volatiles are in part behaviorally redundant, since attraction to a 3-component blend of beta-caryophyllene, (E)-beta-farnesene and (E)-4,8-dimethyl-1,3,7-nonatriene was not significantly different from the 10-component blend. Blending these three compounds had a strong synergistic effect on female attraction, and omission of any one compound from this 3-component blend almost abolished attraction. It was nonetheless possible to substitute the three compounds with the other grape volatiles which are perceived by the female antenna, to partly restore attraction. Several blends, of varying composition, elicited significant attraction. The observed behavioral plasticity in response to grape volatile blends probably reflects the variation of the natural plant signal, since females oviposit on different grape varieties, in different phenological stages.  相似文献   

20.
Bean plants infested with herbivorous spider mites emit volatile chemicals that are attractive toP. persimilis, a predator of spider mites. In Y-tube olfactometer tests we evaluated involvement of a genetic component in predator response to herbivore-induced plant volatiles. Replicated bidirectional selection resulted in a significant increase in attraction after one generation of selection, but no decrease even after three generations of selection, indicating significant, but unbalanced, additive genetic variation in predator perception of, or response to, herbivore-induced plant volatiles. Selected lines responded differently than an unselected population to food deprivation, pointing to an interaction between their internal state and response to plant volatiles. Selected lines also differed from unselected ones in behaviors associated with local prey exploitation, such as residence time, prey consumption, and reproduction. At lower prey densities,P. persimilis from both “+” lines left spider mite-infested leaves more rapidly and consumed fewer prey eggs than an unselected population. Defining olfactory components of predator search behavior is one step in understanding the effect of plant volatiles on predator foraging efficiency. By selecting lines differing in their attraction to herbivore-induced plant volatiles we may experimentally investigate the link between this behavior, predator foraging efficiency, and local and regional predator-prey population dynamics. The impact of significant additive genetic variation in predator response to plant volatiles on evolution in a tritrophic context also remains to be uncovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号