首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
That ventilation in fish is driven by O2 has long been accepted. The O2 ventilatory drive reflects the much lower capacitance of water for O2 than for CO2, and is mediated by O2 receptors that are distributed throughout the gill arches and that monitor both internal and external O2 levels. In recent years, however, evidence has amassed in support of the existence of a ventilatory drive in fish that is keyed to CO2 and/or pH. While ventilatory responses to CO2/pH may be mediated in part by the O2 drive through CO2/pH-induced changes in blood O2 status, CO2/pH also appear to stimulate ventilation directly. The receptors involved in this pathway are as yet unknown, but the experimental evidence available to date supports the involvement of branchial CO2-sensitive chemoreceptors with an external orientation. Internally-oriented CO2-sensitive chemoreceptors may also be involved, although evidence on this point remains equivocal. In the present paper, the evidence for a CO2/pH-keyed ventilatory drive in fish will be reviewed.  相似文献   

2.
The initial response of the IGF-I system and the expression and cellular localization of IGF type-I receptor (IGF-IR) were studied in the gill of a euryhaline teleost during salinity acclimation. Exposure of striped bass (Morone saxatilis) to hyperosmotic and hypoosmotic challenges induced small, transitory (<24 h) deflections in hydromineral balance. Transfer from freshwater (FW) to seawater (SW) induced an initial decrease in plasma IGF-I levels after 24 h in both fed and fasted fish. There was an overall decrease in liver IGF-I mRNA levels after SW transfer, suggesting that decreased plasma levels may be due to a decline in hepatic IGF-I synthesis. No changes were observed in gill IGF-I mRNA, but SW transfer induced an increase in gill IGF-IR mRNA after 24 h. Transfer from SW to FW induced an increase in plasma IGF-I levels in fasted fish. In fed fish, no significant changes were observed in either plasma IGF-I, liver, or gill IGF-I mRNA, or gill IGF-IR mRNA levels. In a separate experiment, FW-acclimated fish were injected with saline or IGF-I prior to a 24-h SW challenge. Rapid regain of osmotic balance following SW transfer was hindered by IGF-I. Immunohistochemistry revealed for the first time in teleosts that IGF-IR and Na(+)-K(+)-ATPase are localized in putative chloride cells at the base of the lamellae, identifying these cells in the gill as a target for IGF-I and IGF-II. Overall the data suggest a hyperosmoregulatory role of IGF-I in this species.  相似文献   

3.
Some freshwater (FW) teleosts are capable of acclimating to seawater (SW) when challenged; however, the related energetic and physiological consequences are still unclear. This study was conducted to examine the changes in expression of gill Na(+)-K(+)-ATPase and creatine kinase (CK) in tilapia (Oreochromis mossambicus) as the acute responses to transfer from FW to SW. After 24 h in 25 ppt SW, gill Na(+)-K(+)-ATPase activities were higher than those of fish in FW. Fish in 35 ppt SW did not increase gill Na(+)-K(+)-ATPase activities until 1.5 h after transfer, and then the activities were not significantly different from those of fish in 25 ppt SW. Compared to FW, the gill CK activities in 35 ppt SW declined within 1.5 h and afterward dramatically elevated at 2 h, as in 25 ppt SW, but the levels in 35 ppt SW were lower than those in 25 ppt SW. The Western blot of muscle-type CK (MM form) was in high association with the salinity change, showing a pattern of changes similar to that in CK activity; however, levels in 35 ppt SW were higher than those in 25 ppt SW. The activity of Na(+)-K(+)-ATPase highly correlated with that of CK in fish gill after transfer from FW to SW, suggesting that phosphocreatine acts as an energy source to meet the osmoregulatory demand during acute transfer.  相似文献   

4.
This study addressed the hypothesis that the secretion of catecholamines from trout (Oncorhynchus mykiss) chromaffin cells, during hypoxia, is triggered by stimulation of O(2) chemoreceptors located within the gills. Sodium cyanide was administered into the inspired water (external cyanide) or injected into the gill circulation (internal cyanide) to pharmacologically stimulate external (water sensing) or internal (blood sensing) O(2) chemoreceptors, respectively. Both of these treatments caused an elevation of circulating catecholamine levels. The response to external, but not internal, cyanide was abolished by removal of the first gill arch. Hypoxia produced an increase in circulating catecholamine levels that was unaffected by removal of the first gill arch or by denervation of the pseudobranch. Cyanide and hypoxia both caused the well-documented cardiorespiratory reflexes normally observed in this species. This study demonstrates, for the first time, that gill O(2) chemoreceptors can initiate the reflex that leads to catecholamine release from the chromaffin cells and that stimulation of internally oriented O(2) receptors on all gill arches appears to be the physiologically important mechanism for initiating release.  相似文献   

5.
6.
Upon transfer of the fresh-water fish, Sarotherodon mossambicus, to 50% sea water, extensive changes take place in the functions of the gill mitochondria. The changes are (i) loss of ADP/O and RCI; (ii) loss of the ability to contract upon addition of ATP-Mg2+; (iii) lowered energy-dependent 45Ca uptake; (iv) increased amino acid incorporation capacity; (v) increased adenine nucleotide content; and (vi) a higher endogenous Ca2+ content. Administration of thyroxine to the fish reversed these changes, and the effect of thyroxine was also not transient. It is suggested that thyroxine promotes mitochondriogenesis, thereby effecting a restoration of the stress-affected mitochondrial functions.  相似文献   

7.
Cichlids of the genus Oreochromis are fish of economic importance in African countries. They tolerate brackish water, however, with great variations between species. In this work, two species, both from the Ivory Coast but of different origins, O. niloticus (field and laboratory strains) and O. aureus (field strain) were compared during osmotic challenges (10, 20 and 30%o salinity) in order to provide physiological support for their specific behaviour when confronted with natural hypertonic environments. Tolerance to salinity was assessed by correlated observations on gill structure, plasma sodium levels and gill Na+/K+ ATPase activity. In fresh water (FW), all fish presented a gill epithelium structure characteristic of FW stenohaline fish: no chloride cells (CC) on the lamellae and few CC on the filaments. An increase in external salinity induced the proliferation of CC on filaments, a feature typical of seawater teleosts. This change in gill structure was accompanied by an increase of gill Na+/K+ ATPase activity. In the most tolerant strains, plasma Na+ did not change, indicating successful ion regulation in the hypertonic media. With regard to potential interest of field strains in fish culture, O. aureus acclimated more easily to brackish water than O. niloticus . Interestingly, O. niloticus , kept for several generations in the laboratory, performed best in our challenge studies. Plasma Na+ levels and gill CC proliferation upon transfer to an isotonic medium may be the parameters of choice when testing these fish for their response to a salinity change.  相似文献   

8.
In external gas exchange of vertebrates, behavior of the respiratory gases CO2 and O2 can in many cases adequately be explained by the different physico-chemical properties of the gases, including solubility, chemical combination in blood and tissue, and diffusivity. In particular, the differences in behavior between CO2 and O2 are often of particular relevance. This is demonstrated on a number of examples of gas exchange mechanisms in vertebrates, including (1) exchange ratio after changes in ventilation, (2) local variations of pulmonary ventilation/perfusion ratio, (3) absorption of gas from gas pockets, (4) water vs. air breathing, (5) multimodal breathing, (6) skin breathing, (7) gas exchange of avian eggs, (8) anomalous gas/blood CO2 equilibration, (9) blood/gas CO2 equilibration in avian lungs, (10) pulmonary diffusing capacity, (11) blood/water CO2 equilibration in fish gills, (12) deposition of gas into fish swim bladder.  相似文献   

9.
The aim of the present study was to evaluate the effects of endothelin-l-elicited cardiovascular events on respiratory gas transfer in the freshwater rainbow trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias). In both species, endothelin-1 (666 pmol kg(-1)) caused a rapid (within 4 min) reduction (ca. 30-50 mmHg) in arterial blood partial pressure of O2. The effects of endothelin-1 on arterial blood partial pressure of CO2 were not synchronised with the changes in O2 partial pressure and the responses were markedly different in trout and dogfish. In trout, arterial CO2 partial pressure was increased transiently by approximately 1.0 mmHg but the onset of the response was delayed and occurred 12 min after endothelin-1 injection. In contrast, CO2 partial pressure remained more-or-less constant in dogfish after injection of endothelin-1 and was increased only slightly (approximately 0.1 mmHg) after 60 min. Pre-treatment of trout with bovine carbonic anhydrase (5 mg ml(-1)) eliminated the increase in CO2 partial pressure that was normally observed after endothelin-1 injection. In both species, endothelin-1 injection caused a decrease in arterial blood pH that mirrored the changes in CO2 partial pressure. Endothelin-1 injection was associated with transient (trout) or persistent (dogfish) hyperventilation as indicated by pronounced increases in breathing frequency and amplitude. In trout, arterial blood pressure remained constant or was decreased slightly and was accompanied by a transient increase in systemic resistance, and a temporary reduction in cardiac output. The decrease in cardiac output was caused solely by a reduction in cardiac frequency; cardiac stroke volume was unaffected. In dogfish, arterial blood pressure was lowered by approximately 10 mmHg at 6-10 min after endothelin-1 injection but then was rapidly restored to pre-injection levels. The decrease in arterial blood pressure reflected an increase in branchial vascular resistance (as determined using in situ perfused gill preparations) that was accompanied by simultaneous decreases in systemic resistance and cardiac output. Cardiac frequency and stroke volume were reduced by endothelin-1 injection and thus both variables contributed to the changes in cardiac output. We conclude that the net consequences of endothelin-1 on arterial blood gases result from the opposing effects of reduced gill functional surface area (caused by vasoconstriction) and an increase in blood residence time within the gill (caused by decreased cardiac output.  相似文献   

10.
Acclimation of crucian carp and goldfish to temperatures below 15°C causes covering of the gill lamellae by a mass of cells termed the interlamellar cell mass (ILCM). Here we explore the cues underlying gill remodeling (removal or growth of an ILCM) and specifically test the hypotheses that 1) depletion of internal O(2) stores in the absence of any change in external O(2) status can trigger the removal of the ILCM in goldfish acclimated to 7°C, 2) exposing fish acclimated to 25°C to an abundance of O(2) (hyperoxia) can reverse the gill remodeling (i.e., cause the covering of lamellae by an expansion of the ILCM), and 3) neuroepithelial cells (NECs) are involved in signaling the shedding of the ILCM. Hypoxemia induced by phenylhydrazine (anemia) or 5% CO caused a decrease in the ILCM from 80% to 23% and 35%, respectively. Hyperoxia exposure at 25°C caused an increase to 67% of total ILCM and a smaller decrease in the size of the ILCM when fish were transferred from 7 to 25°C. Daily sodium cyanide injections were used to stimulate NECs; this treatment led to a significant decrease in the ILCM. Thus, the three major conclusions of this study are 1) that gill remodeling can occur during periods of internal hypoxemia, 2) that O(2) supply and demand may be a significant driving force shaping gill remodeling in goldfish, and 3) the NECs may play a role in triggering the shedding of the ILCM during hypoxia.  相似文献   

11.
The catecholamines, adrenaline and noradrenaline, are released into the circulation of fish during a variety of physical and environmental disturbances that share the common feature of a requirement for enhanced blood oxygen transport. Indeed, the dominant factor controlling the mobilization of catecholamines from chromaffin tissue is a depression of blood oxygen content usually coinciding with a reduction of hemoglobin-O2 (Hb-O2) binding to 50-60% saturation. The elevation of plasma catecholamine levels, under such conditions, activates a beta-adrenergic cyclic AMP-dependent Na+/H+ exchanger on the red blood cell (rbc) membrane. The adrenergic responsiveness AMP-dependent Na+/H+ exchanger on the red blood cell (rbc) membrane. The adrenergic responsiveness of the rbc Na+/H+ exchanger to catecholamines varies both within and between species. Such inter- and intra-specific differences may reflect, in part, the availability of cell surface beta-adrenoceptors that are functionally coupled to adenylate cyclase. The activation of rbc Na+/H+ exchange and the accompanying profound adjustments of intracellular and extracellular acid-base status, nucleoside triphosphate (NTP) levels, and cooperativity of Hb-O2 binding have important consequences on both O2 and CO2 transfer and transport in the blood that vary markedly at the sites of oxygenation (the gill) and deoxygenation (the tissues) thereby enabling simultaneous amelioration of O2 loading and unloading. At the gill, oxygen transfer is enhanced owing to increases in Hb-O2 affinity and capacity while at the tissues, oxygen delivery is facilitated by a reduction of Hb-O2 affinity. This reduction in affinity at the tissues is a consequence of the combined effects of increased cooperativity of Hb-O2 binding and a rise in venous PCO2 (PvCO2) caused by the titration of HCO3- by H+ extruded by the rbc Na+/H+ exchanger. This elevation of PvCO2 may contribute to the rise in arterial PCO2 (PaCO2) observed after adrenergic activation of rbc Na+/H+ exchange that is caused primarily by impairment of rbc CO2 excretion related to modification of the intracellular acid-base status.  相似文献   

12.
This comparative study of the gill morphometrics in scombrids (tunas, bonitos, and mackerels) and billfishes (marlins, swordfish) examines features of gill design related to high rates of gas transfer and the high‐pressure branchial flow associated with fast, continuous swimming. Tunas have the largest relative gill surface areas of any fish group, and although the gill areas of non‐tuna scombrids and billfishes are smaller than those of tunas, they are also disproportionally larger than those of most other teleosts. The morphometric features contributing to the large gill surface areas of these high‐energy demand teleosts include: 1) a relative increase in the number and length of gill filaments that have, 2) a high lamellar frequency (i.e., the number of lamellae per length of filament), and 3) lamellae that are long and low in profile (height), which allows a greater number of filaments to be tightly packed into the branchial cavity. Augmentation of gill area through these morphometric changes represents a departure from the general mechanism of area enhancement utilized by most teleosts, which lengthen filaments and increase the size of the lamellae. The gill design of scombrids and billfishes reflects the combined requirements for ram ventilation and elevated energetic demands. The high lamellar frequencies and long lamellae increase branchial resistance to water flow which slows and streamlines the ram ventilatory stream. In general, scombrid and billfish gill surface areas correlate with metabolic requirements and this character may serve to predict the energetic demands of fish species for which direct measurement is not possible. The branching of the gill filaments documented for the swordfish in this study appears to increase its gill surface area above that of other billfishes and may allow it to penetrate oxygen‐poor waters at depth. J. Morphol. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Ion and acid-base regulating mechanisms have been studied at the fish gill for almost a century. Original models proposed for Na(+) and Cl(-) uptake, and their linkage with H(+) and HCO(3)(-) secretion have changed substantially with the development of more sophisticated physiological techniques. At the freshwater fish gill, two dominant mechanisms for Na(+) uptake from dilute environments have persisted in the literature. The use of an apical Na(+)/H(+) exchanger driven by a basolateral Na(+)/K(+)-ATPase versus an apical Na(+) channel electrogenically coupled to an apical H(+)-ATPase have been the source of debate for a number of years. Advances in molecular biology have greatly enhanced our understanding of the basic ion transport mechanisms at the fish gill. However, it is imperative to ensure that thermodynamic principles are followed in the development of new models for gill ion transport. This review will focus on the recent molecular advances for Na(+) uptake in freshwater fish. Emphasis will be placed on thermodynamic constraints that prevent electroneutral apical NHE function in most freshwater environments. By combining recent advances in molecular and functional physiology of fish gills with thermodynamic considerations of ion transport, our knowledge in the field should continue to grow in a logical manner.  相似文献   

14.
Previous in vitro and in vivo animal studies showed that O(2) and CO(2) concentrations can affect virulence of pathogenic bacteria such as Staphylococcus aureus. The objective of this work was to measure O(2) and CO(2) levels in the vaginal environment during tampon wear using newly available sensor technology. Measurements by two vaginal sensors showed a decrease in vaginal O(2) levels after tampon insertion. These decreases were independent of the type of tampons used and the time of measurement (mid-cycle or during menstruation). These results are not in agreement with a previous study that concluded that oxygenation of the vaginal environment during tampon use occurred via delivery of a bolus of O(2) during the insertion process. Our measurements of gas levels in menses showed the presence of both O(2) and CO(2) in menses. The tampons inserted into the vagina contained O(2) and CO(2) levels consistent with atmospheric conditions. Over time during tampon use, levels of O(2) in the tampon decreased and levels of CO(2) increased. Tampon absorbent capacity, menses loading, and wear time influenced the kinetics of these changes. Colonization with S. aureus had no effect on the gas profiles during menstruation. Taken collectively, these findings have important implications on the current understanding of gaseous changes in the vaginal environment during menstruation and the potential role(s) they may play in affecting bacterial virulence factor production.  相似文献   

15.
Mass transfers of O(2), CO(2), and water vapor are among the key processes in the aerobic, autotrophic cultivation of moderate and extreme thermophiles. The dynamics and kinetics of these processes are, in addition to the obvious microbial kinetics, of crucial importance for the industrial desulfurization of high-pyritic coal by such thermophiles. To evaluate the role of the temperature on the gas mass transfer, k(L)a measurements have been used to supplement the existing published data. Oxygen mass transfer from gas (air) to liquid (5 mM H(2)SO(4) in water) phase as a function of the temperature has been studied in a laboratory-scale fermentor. At 15, 30, 45, and 70 degrees C, (k(L)a)(o) values (for oxygen) were determined under three different energy input conditions by the dynamic gassing in/out method. The (k(L)a)(o) was shown to increase under these conditions with increasing temperature, and straight lines were obtained when the logarithm of (k(L)a)(o) was plotted against the temperature. By multiplying the equilibrium concentration of O(2) in water with (k(L)a)(o) maximal, O(2) transfer capacities were calculated. It appeared that in finite of a decreased solubility of O(2) at elevated temperature in mechanically mixed fermentors the calculated transfer capacities showed only minor changes for the range between 15 and 70 degrees C. However, in an air-mixed fermentor the transfer capacity of O(2) decreased slowly but steadily.Carbon dioxide mass transfer was predicted by calculations on the basis of the data for oxygen transfer. The maximal CO(2) transfer capacity, calculated as the product of the equilibrium CO(2) concentration times (k(L)a)(c), decreased slowly as the temperature increased over the range 15-70 degrees C under all three energy input conditions. Subsequent process design calculations showed that for aerobic, autotrophic cultures, CO(2) limitation is more likely to occur than O(2) limitation.  相似文献   

16.
The osmoregulatory action of 17beta-estradiol (E2) was examined in the euryhaline teleost Sparus auratas. In a first set of experiments, fish were injected once with vegetable oil containing E2 (1, 2 and 5 microg/g body weight), transferred 12h after injection from sea water (SW, 38 ppt salinity) to hypersaline water (HSW, 55 ppt) or to brackish water (BW, 5 ppt salinity) and sampled 12h later (i.e. 24 h post-injection). In a second experiment, fish were injected intraperitoneally with coconut oil alone or containing E2 (10 microg/g body weight) and sampled after 5 days. In the same experiment, after 5 days of treatment, fish of each group were transferred to HSW, BW and SW and sampled 4 days later (9 days post-implant). Gill Na+,K+ -ATPase activity, plasma E2 levels, plasma osmolality, and plasma levels of ions (sodium and calcium), glucose, lactate, protein, triglyceride, and hepatosomatic index were examined. Transfer from SW to HSW produced no significant effects on any parameters assessed. E2 treatment did not affect any parameter. Transfer from SW to BW resulted in a significant decrease in plasma osmolality and plasma sodium but did not affect gill Na+,K+ -ATPase activity. A single dose of E2 attenuated the decrease in these parameters after transfer from SW to BW, but was without effect on gill Na+,K+ -ATPase activity. An implant of E2 (10 microg/g body weight) for 5 days significantly increased plasma calcium, hepatosomatic index, plasma metabolic parameters, and gill Na+,K+ -ATPase activity. In coconut oil-implanted (sham) fish, transfer from SW to HSW or BW during 4 days significantly elevated gill Na+,K+ -ATPase. Gill Na+,K+ -ATPase activity remained unaltered after transfer of E2-treated fish to HSW or BW. However, in E2-treated fish transferred from SW to SW (9 days in SW after E2-implant), gill Na+,K+ -ATPase activity decreased with respect to HSW- or BW-transferred fish. Shams transferred to HSW showed increased levels of lactate, protein, and trygliceride in plasma, while those transferred to BW only displayed increased trygliceride levels. E2-treated fish transferred to HSW showed higher protein levels without any change in other plasmatic parameters, while those transferred to BW displayed elevated plasma glucose levels but decreased osmolality and protein levels. These results substantiate a chronic stimulatory action of E2 on gill Na+,K+ -ATPase activity in the euryhaline teleost Sparus auratas.  相似文献   

17.
The naked carp is an endangered cyprinid that migrates annually between freshwater rivers, where it spawns, and Lake Qinghai, where it feeds and grows. Lake Qinghai is a high-altitude lake (3,200 m) in western China that currently exhibits the following composition (in mmol L(-1): [Na(+)] 200, [Cl(-)] 173, [Mg(2+)] 36, [Ca(2+)] 0.23, [K(+)] 5.3, total CO(2) 21, titration alkalinity 29; osmolality 375 mOsm kg(-1); pH 9.3), but concentrations are increasing because of water diversion and climate change. We studied the physiology of river water to lake water transfer. When river fish are transferred to lake water, there is a transitory metabolic acidosis followed by a slight respiratory alkalosis, and hemoconcentration occurs. All plasma electrolytes rise over the initial 48 h, and final levels in lake water-acclimated fish are very close to lake water concentrations for [Na(+)], [Cl(-)], [K(+)], and osmolality, whereas [Ca(2+)] continues to be regulated well above ambient levels. However, [Mg(2+)] rises to a much greater extent (fourfold in 48 h); final plasma levels in lake fish may reach 12 mmol L(-1) but are still much lower than in lake water (36 mmol L(-1)). At the same time, urine flow rate decreases drastically to <5% of river water values; only the renal excretion of Mg(2+) is maintained. Both gill and kidney Na(+),K(+)-ATPase rapidly decline, with final levels in lake water fish only 30% and 70%, respectively, of those in river water fish. Metabolic rate also quickly decreases on exposure to lake water, with O(2) consumption and ammonia-N excretion rates eventually falling to only 60% and 30%, respectively, of those in river fish, while plasma ammonia rises fivefold. The fish appear to be benefiting from a metabolic holiday at present because of decreases in iono- and osmoregulatory costs while in lake water; elevated plasma [Mg(2+)] and ammonia may be additional factors depressing metabolic rate. If the lake continues to dehydrate, these benefits may change to pathology.  相似文献   

18.
The effects of gill abrasion and experimental infection with Tenacibaculum maritimum were assessed in Atlantic salmon Salmo salar with underlying amoebic gill disease. The respiratory and acid-base parameters arterial oxygen tension (P(a)O2), arterial whole blood oxygen content (C(a)O2), arterial pH (pHa), haematocrit and haemoglobin concentrations were measured at intervals over a 48 h recovery period following surgical cannulation of the dorsal aorta. Mortality rates over the recovery period were variable, with gill abrasion and inoculation with T. maritimum causing the highest initial mortality rate and unabraded, uninoculated controls showing the lowest overall mortality rate. Fish with abraded gills tended to show reduced P(a)O2 and lower C(a)O2 compared with unabraded fish. Infection with T. maritimum had no effect on P(a)O2 or C(a)O2. All fish showed an initial alkalosis at 24 h post-surgery/inoculation which was more pronounced in fish inoculated with T. maritimum. There were no significant effects of gill abrasion or infection upon the ratio of oxygen specifically bound to haemoglobin or mean cellular haemoglobin concentration. Histologically, 48 h following surgery, abraded gills showed multifocal hyperplastic lesions with pronounced branchial congestion and telangiectasis, and those inoculated with T. maritimum exhibited focal areas of branchial necrosis and erosion associated with filamentous bacterial mats. All fish examined showed signs of amoebic gill disease with multifocal hyperplastic and spongious lesions with parasome-containing amoeba associated with the gill epithelium. The results suggest that respiratory compromise occurred as a consequence of gill abrasion rather than infection with T. maritimum.  相似文献   

19.
This project aimed to measure biochemical and cytogenetic biomarkers in marine fish (Aldrichetta forsteri and Sillago schomburgkii) associated with industrial and urban centres in South Australia. These sites were Port Pirie (affected by metal-contaminated outflows), Barker Inlet (adjacent to Metropolitan Adelaide), and Wills Creek (reference site). The biochemical biomarkers included sorbitol dehydrogenase (SDH) and alanine aminotransferase (ALAT) in serum, adenylate levels (ATP, ADP and AMP) and adenylate energy charge (AEC) in gill and liver, and sodium/potassium ATPase (Na+, K+-ATPase) in gill. Erythrocyte micronucleus frequency was a marker of cytogenetic effect. Serum enzyme levels were generally higher in fish from Port Pirie and Barker Inlet than in those from Wills Creek, with SDH demonstrating the clearest site-associated differences. Tissue adenylates were consistently lower at Port Pirie than elsewhere, suggesting a greater metabolic strain in fish at this site. AEC in gill and liver were consistently lower at Port Pirie than at Wills Creek, with Barker Inlet generally between these two. The reversed rank order was observed with erythrocyte micronucleus frequencies. Seasonal variations in the biomarkers may be attributed either to seasonal physiological changes in fish or changes in pollutant input levels or compositions. Na+, K+-ATPase did not differ between sites nor seasons in this study. This work shows that biochemical and cytogenetic differences occur in marine fish at specific locations in South Australia. It also shows that of these tests, serum SDH and erythrocyte micronuclei are potentially the most sensitive and reliable biomarkers of pollutants effects on marine fish. The results also suggest that these data may be used as a baseline against which future changes in marine water quality, and their consequent biological effects, can be compared.  相似文献   

20.
Reactive oxygen species and cellular oxygen sensing   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号