首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
MuSI, a gene that corresponds to a domain that contains the rubber elongation factor (REF), is highly homologous to many stress-related proteins in plants. Since MuSI is up-regulated in the roots of plants treated with cadmium or copper, the involvement of MuSI in cadmium tolerance was investigated in this study. Escherichia coli cells overexpressing MuSI were more resistant to Cd than wild-type cells transfected with vector alone. MuSI transgenic plants were also more resistant to Cd. MuSI transgenic tobacco plants absorbed less Cd than wild-type plants. Cd translocation from roots to shoots was reduced in the transgenic plants, thereby avoiding Cd toxicity. The number of short trichomes in the leaves of wild-type tobacco plants was increased by Cd treatment, while this was unchanged in MuSI transgenic tobacco. These results suggest that MuSI transgenic tobacco plants have enhanced tolerance to Cd via reduced Cd uptake and/or increased Cd immobilization in the roots, resulting in less Cd translocation to the shoots.  相似文献   

2.
A rice chitinase cDNA (RCC2) driven by the CaMV 35S promoter was introduced into cucumber (Cucumis sativus L.) through Agrobacterium mediation. More than 200 putative transgenic shoots were regenerated and grown on MS medium supplemented with 100 mg/l kanamycin. Sixty elongated shoots were examined for the presence of the integrated RCC2 gene and subsequently confirmed to have it. Of these, 20 were tested for resistance against gray mold (Botrytis cinerea) by infection with the conidia: 15 strains out of the 20 independent shoots exhibited a higher resistance than the control (non-transgenic plants). Three transgenic cucumber strains (designated CR29, CR32 and CR33) showed the highest resistance against B. cinerea: the spread of disease was inhibited completely in these strains. Chitinase gene expression in highly resistant transgenic strains (CR32 and CR33) was compared to that of a susceptible transgenic strain (CR20) and a control. Different responses for disease resistance were observed among the highly resistant strains. CR33 inhibited appressoria formation and penetration of hyphae. Although CR32 permitted penetration of hyphae, invasion of the infection hyphae was restricted. Furthermore, progenies of CR32 showed a segregation ratio of 3:1 (resistant:susceptible). As the disease resistance against gray mold was confirmed to be inheritable, these highly resistant transgenic cucumber strains would serve as good breeding materials for disease resistance. Received: 31 March 1996 / Revision received: 2 July 1997 / Accepted: 18 July 1997  相似文献   

3.
4.
Transgenic Japanese lawngrass (Zoysia japonica Steud.) plants were generated by means of polyethylene glycol (PEG)-mediated direct gene transfer into protoplasts. The plasmid pBC1 was used to deliver the hygromycin phosphotransferase (hph) and β-glucuronidase (gus) genes into protoplasts. Selection with a high concentration (400 mg/l) of hygromycin yielded a number of resistant calli and about 400 plants were generated. Polymerase chain reaction (PCR) and Southern hybridization analyses revealed that all of then plants tested contained introduced genes. The gus gene regulated by the maize alcohol dehydrogenase-1 (Adh 1) promoter was expressed in the leaves and roots of transgenic Japanese lawngrass plants. Received: 13 December 1996 / Revision received: 9 June 1997 / Accepted: 2 September 1997  相似文献   

5.
Tall fescue (Festuca arundinacea Schreb.) is an important turf and forage grass species worldwide. Fungal diseases present a major limitation in the maintenance of tall fescue lawns, landscapes, and forage fields. Two severe fungal diseases of tall fescue are brown patch, caused by Rhizoctonia solani, and gray leaf spot, caused by Magnaporthe grisea. These diseases are often major problems of other turfgrass species as well. In efforts to obtain tall fescue plants resistant to these diseases, we introduced the bacteriophage T4 lysozyme gene into tall fescue through Agrobacterium-mediated genetic transformation. In replicated experiments under controlled environments conducive to disease development, 6 of 13 transgenic events showed high resistance to inoculation of a mixture of two M. grisea isolates from tall fescue. Three of these six resistant plants also displayed significant resistance to an R. solani isolate from tall fescue. Thus, we have demonstrated that the bacteriophage T4 lysozyme gene confers resistance to both gray leaf spot and brown patch diseases in transgenic tall fescue plants. The gene may have wide applications in engineered fungal disease resistance in various crops.  相似文献   

6.
Chimaeric TA29-barnase gene was obtained by fusing tobacco anther-specific promoter TA29, barnase gene and NOS terminator and was inserted into a plant expression yector containing bromoxynil-resistant bxn gene and then introduced into tobacco plants. Some transgenic tobacco plants were resistant to 1.0 × 10-3 mol/L bromoxynil. At about 26℃, all of the 9 transgenic plants were male fertile; However, at 20℃, 7 out of 11 transgenic plants were male sterile.  相似文献   

7.
The pea plastocyanin gene in a 3.5 kbp Eco RI fragment of pea nuclear DNA was introduced into tobacco by Agrobacterium-mediated transformation. Regenerated plants contained pea plastocyanin located within the chloroplast thylakoid membrane system. Analysis of seedlings from a self-pollinated transgenic plant containing a single copy of the pea plastocyanin gene indicated that seedlings homozygous for the pea gene contained almost twice as much pea plastocyanin as seedlings hemizygous for the pea gene. Homozygous seedlings contained approximately equal amounts of pea and tobacco plastocyanins. The amount of tobacco plastocyanin in leaves of transgenic plants was unaffected by the expression of the pea plastocyanin gene. The mRNA from the pea gene in tobacco was indistinguishable by northern blotting and S1 nuclease protection from the mRNA found in pea. In both pea and transgenic tobacco, expression of the pea plastocyanin gene was induced by light in leaves but was suppressed in roots. Pea plastocyanin free of contaminating tobacco plastocyanin was purified from transgenic tobacco plants and shown to be indistinguishable from natural pea plastocyanin by N-terminal protein sequencing and 1H NMR spectroscopy.  相似文献   

8.
Helicoverpa armigera is a major pest of many tropical crop plants. Soybean trypsin inhibitor (SBTI) was highly effective against the proteolytic activity of gut extract of the insect. SBTI was also inhibitory to insect growth when present in artificial diet. The gene coding for SBTI was cloned from soybean (Glycine max, CVBirsa) and transferred to tobacco plants for constitutive expression. Young larvae ofH. armigera, fed on the leaves of the transgenic tobacco plants expressing high level of SBTI, however, maintained normal growth and development. The results suggest that in certain cases the trypsin inhibitor gene(s) may not be suitable candidates for developing insect resistant transgenic plants.  相似文献   

9.
Overexpression of antifungal pathogenesis-related (PR) proteins in crop plants has the potential for enhancing resistance against fungal pathogens. Thaumatin-like proteins (TLPs) are one group (PR-5, permatins) of antifungal PR-proteins isolated from various plants. In the present study, a plasmid containing a cDNA of rice tlp (D34) under the control of the CaMV-35S promoter was introduced into tobacco plants through Agrobacterium-mediated transformation system. A considerable overproduction of TLP was observed in transformed tobacco plants by Western blot analysis. There was a large accumulation of tlp mRNA in transgenic plants as revealed by Northern blot analysis. Southern blot analysis of the DNA from transgenic tobacco plants confirmed the presence of the rice tlp gene in the genomic DNA of transgenic tobacco plants. Immunoblot analysis of intracellular and extracellular proteins of transgenic tobacco leaves using a Pinto bean TLP antibody demonstrated that the 23-kDa TLP was secreted into the extracellular matrix. T2 progeny of regenerated plants transformed with TLP gene were tested for their disease reaction to Alternaria alternata, the brown spot pathogen. Transgenic tobacco plants expressing TLP at high levels showed enhanced tolerance to necrotization caused by the pathogen. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
We have developed a new strategy for engineering resistance to multipleviruses in plants. The strategy exploits the human double stranded (ds)RNA-dependent protein kinase (PKR). PKR is one of theinterferon-induced enzymes. It confers viral resistance in mammals byinhibitingviral replication through the inactivation of the translational initiationfactor, eIF-2, upon activation by dsRNA. The humanPKR gene was fused to the promoter of theArabidopsis blue copper binding protein gene(BCB) that is induced rapidly in response to wounding. Thechimeric gene cassette was introduced into tobacco plants. Expression of thePKR gene in transgenic tobacco plants was demonstrated byRNA gel blot analysis and autophosphorylation assay of anM r 68,000 protein. The transgenic plantsexpressing the PKR gene showed significantly reduced viralsymptoms or no viral symptoms at all, when challenged by different plant RNAviruses, such as Cucumber mosaic virus, Tobaccoetch virus, or Potato virus Y. Thus, expressionof a single component in the human interferon pathway, thePKR gene, can effectively confer resistance to multipleviruses in transgenic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号