首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has previously been shown that generic cortical microcircuit models can perform complex real-time computations on continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We investigate the computational capability of such circuits in the more realistic case where not only readout neurons, but in addition a few neurons within the circuit, have been trained for specific tasks. This is essentially equivalent to the case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any conceivable digital or analog computation on time-varying inputs. But even with noise, the resulting computational model can perform a large class of biologically relevant real-time computations that require a nonfading memory. We demonstrate these computational implications of feedback both theoretically, and through computer simulations of detailed cortical microcircuit models that are subject to noise and have complex inherent dynamics. We show that the application of simple learning procedures (such as linear regression or perceptron learning) to a few neurons enables such circuits to represent time over behaviorally relevant long time spans, to integrate evidence from incoming spike trains over longer periods of time, and to process new information contained in such spike trains in diverse ways according to the current internal state of the circuit. In particular we show that such generic cortical microcircuits with feedback provide a new model for working memory that is consistent with a large set of biological constraints. Although this article examines primarily the computational role of feedback in circuits of neurons, the mathematical principles on which its analysis is based apply to a variety of dynamical systems. Hence they may also throw new light on the computational role of feedback in other complex biological dynamical systems, such as, for example, genetic regulatory networks.  相似文献   

2.
It has recently been shown that networks of spiking neurons with noise can emulate simple forms of probabilistic inference through “neural sampling”, i.e., by treating spikes as samples from a probability distribution of network states that is encoded in the network. Deficiencies of the existing model are its reliance on single neurons for sampling from each random variable, and the resulting limitation in representing quickly varying probabilistic information. We show that both deficiencies can be overcome by moving to a biologically more realistic encoding of each salient random variable through the stochastic firing activity of an ensemble of neurons. The resulting model demonstrates that networks of spiking neurons with noise can easily track and carry out basic computational operations on rapidly varying probability distributions, such as the odds of getting rewarded for a specific behavior. We demonstrate the viability of this new approach towards neural coding and computation, which makes use of the inherent parallelism of generic neural circuits, by showing that this model can explain experimentally observed firing activity of cortical neurons for a variety of tasks that require rapid temporal integration of sensory information.  相似文献   

3.
Caenorhabditis elegans, a soil dwelling nematode, is evolutionarily rudimentary and contains only ∼ 300 neurons which are connected to each other via chemical synapses and gap junctions. This structural connectivity can be perceived as nodes and edges of a graph. Controlling complex networked systems (such as nervous system) has been an area of excitement for mankind. Various methods have been developed to identify specific brain regions, which when controlled by external input can lead to achievement of control over the state of the system. But in case of neuronal connectivity network the properties of neurons identified as driver nodes is of much importance because nervous system can produce a variety of states (behaviour of the animal). Hence to gain insight on the type of control achieved in nervous system we implemented the notion of structural control from graph theory to C. elegans neuronal network. We identified ‘driver neurons’ which can provide full control over the network. We studied phenotypic properties of these neurons which are referred to as ‘phenoframe’ as well as the ‘genoframe’ which represents their genetic correlates. We find that the driver neurons are primarily motor neurons located in the ventral nerve cord and contribute to biological reproduction of the animal. Identification of driver neurons and its characterization adds a new dimension in controllability of C. elegans neuronal network. This study suggests the importance of driver neurons and their utility to control the behaviour of the organism.  相似文献   

4.
Lycium barbarum (Gouqizi, Fructus Lycii, Wolfberry) is well known for nourishing the liver, and in turn, improving the eyesight. However, many people have forgotten its anti-aging properties. Valuable components of L. barbarum are not limited to its colored components containing zeaxanthin and carotene, but include the polysaccharides and small molecules such as betaine, cerebroside, beta-sitosterol, p-coumaric, and various vitamins. Despite the fact that L. barbarum has been used for centuries, its beneficial effects to our bodies have not been comprehensively studied with modern technology to unravel its therapeutic effects at the biochemical level. Recently, our laboratory has demonstrated its neuroprotective effects to counter neuronal loss in neurodegenerative diseases. Polysaccharides extracted from L. barbarum can protect neurons against beta-amyloid peptide toxicity in neuronal cell cultures, and retinal ganglion cells in an experimental model of glaucoma. We have even isolated the active component of polysaccharide which can attenuate stress kinases and pro-apoptotic signaling pathways. We have accumulated scientific evidence for its anti-aging effects that should be highlighted for modern preventive medicine. This review is to provide background information and a new direction of study for the anti-aging properties of L. barbarum. We hope that new findings for L. barbarum will pave a new avenue for the use of Chinese medicine in modern evidence-based medicine.  相似文献   

5.
Brain is an expert in producing the same output from a particular set of inputs, even from a very noisy environment. In this article a model of neural circuit in the brain has been proposed which is composed of cyclic sub-circuits. A big loop has been defined to be consisting of a feed forward path from the sensory neurons to the highest processing area of the brain and feed back paths from that region back up to close to the same sensory neurons. It has been mathematically shown how some smaller cycles can amplify signal. A big loop processes information by contrast and amplify principle. How a pair of presynaptic and postsynaptic neurons can be identified by an exact synchronization detection method has also been mentioned. It has been assumed that the spike train coming out of a firing neuron encodes all the information produced by it as output. It is possible to extract this information over a period of time by Fourier transforms. The Fourier coefficients arranged in a vector form will uniquely represent the neural spike train over a period of time. The information emanating out of all the neurons in a given neural circuit over a period of time can be represented by a collection of points in a multidimensional vector space. This cluster of points represents the functional or behavioral form of the neural circuit. It has been proposed that a particular cluster of vectors as the representation of a new behavior is chosen by the brain interactively with respect to the memory stored in that circuit and the amount of emotion involved. It has been proposed that in this situation a Coulomb force like expression governs the dynamics of functioning of the circuit and stability of the system is reached at the minimum of all the minima of a potential function derived from the force like expression. The calculations have been done with respect to a pseudometric defined in a multidimensional vector space.  相似文献   

6.
Brain plasticity refers to the brain’s ability to change structure and/or function during maturation, learning, environmental challenges, or disease. Multiple and dissociable plastic changes in the adult brain involve many different levels of organization, ranging from molecules to systems, with changes in neural elements occurring hand-in-hand with changes in supportive tissue elements, such as glia cells and blood vessels. There is now substantial evidence indicating that new functional neurons are constitutively generated from endogenous pools of neural stem cells in restricted areas of the mammalian brain, throughout life. So, in addition to all the other known structural changes, entire new neurons can be added to the existing network circuitry. This addition of newborn neurons provides the brain with another tool for tinkering with the morphology of its own functional circuitry. Although the ongoing neurogenesis and migration have been extensively documented in non-mammalian species, its characteristics in mammals have just been revealed and thus several questions remain yet unanswered. Is adult neurogenesis an atavism, an empty-running leftover from evolution? What is adult neurogenesis good for and how does the brain ‘know’ that more neurons are needed? How is this functional demand translated into signals a precursor cell can detect? Adult neurogenesis may represent an adaptive response to challenges imposed by an environment and/or internal state of the animal. To ensure this function, the production, migration, and survival of newborn neurons must be tightly controlled. We attempt to address some of these questions here, using the olfactory bulb as a model system.  相似文献   

7.
Fetal neurografts containing the suprachiasmatic nucleus (SCN) can restore the circadian locomotor and drinking rhythm of SCN-lesioned (SCNX) rat and hamster. This functional outcome finally proves that the endogenous biological clock autonomously resides in the SCN. Observations on the cellular requirements of the “new” SCN for restoration of the arrhythmic SCNX animals have led to some new insights and confirmed findings from other studies. A critical mass of SCN neurons appeared necessary for functional effects, whereas the temporal profile of reinstatement of rhythm correlated with the delayed maturation of the grafted SCN. Cytoarchitectoni-cally, the grafted SCN does not seem to develop normally for all anatomical aspects. Complementary clusters of vasoactive intestinal polypeptide(VIP)-and vasopressin(VP)ergic neurons are formed, but somatostatin(SOM)ergic neurons do not always “join” this group, as is normally seen in situ. Nevertheless, these new SCNs can restore the ablated functions. As the period length of restored rhythms tends to vary, it might be that the grafted SCN underwent an altered or impaired maturation that resulted in a different setting of its clock mechanism. A prominent role of VIPergic neurons seems indicated by their presence in all functional grafts, but, although they may be required, these cells do not appear to be a sufficient condition for restoration of rhythm. Many grafts exhibit the presence of VIPergic cells without counteracting the arrhythmia, whereas VP- and SOMergic SCN neurons are usually present as well. Findings with VP-deficient Brattleboro rat grafts indicated that VP is not the primary obligatory signal of circadian activity. It is argued that perhaps the role of SOMergic neurons in the clock function of the (grafted) SCN has been insufficiently considered. However, one should keep in mind that the peptides of the various types of SCN neurons may function only as cofactors, mutually modulating molecular or bioelectrical cellular activities within the nucleus or the message of the main transmitter γ-aminobutyric acid.  相似文献   

8.
一直以来,乳酸在脑中被视作代谢废物,对其功能认识严重滞后。近年来,越来越多的证据表明,乳酸在多种生理与病理过程中扮演重要角色。在神经细胞中,星形胶质细胞是产生和释放乳酸的主要细胞源,该细胞通过有氧糖酵解过程生成乳酸,随后经跨膜通道释放至胞外进入神经元为其供能。在中枢神经系统中,乳酸对稳态调节发挥着十分重要的作用。乳酸主要通过两种途径,即代谢途径(作为能量底物)与信号途径(作为信号分子)调控神经元的功能活动,广泛参与神经元能量代谢、兴奋性、可塑性、学习记忆及神经系统发育等生理过程调节,亦参与抑郁行为、阿尔兹海默病(AD)和脑损伤等病理过程的调节。在脑组织中,存在着乳酸特异性受体(GPR81),乳酸与其结合后调控胞内的第二信使。此外,还发现乳酸可通过未知受体调节神经元的兴奋性以及作为信号分子的其他作用。本文就乳酸作为能量底物和信号分子及其参与相关神经疾病的研究进展进行阐述,旨在为相关中枢神经系统疾病防治提供新思路。  相似文献   

9.
A method has been developed whereby the discharge of mechanically sensitive neurons from the cat knee joint capsule can be calibrated and used as load cells. The neurons are located in the upper edge of the capsule which has been previously modeled as a suspension cable and where the loading has been shown to be one dimensional. The calibration procedure relies upon applying known point loads to the cable and measuring its shape. The biomechanical model is then used to compute the cable tension at the neuron location. Results for 20 neurons showed a strong linear relationship between the tension and the frequency of neuronal discharge (r = 0.96, S.D. = 0.05). For 11 of these neurons the in vivo calibration was verified by subsequently excising the posterior capsule and recording from the same neuron while subjecting the cable to measured uniaxial loads. Results showed good agreement between the in vivo and in vitro calibrations. Once calibrated these neurons can be used as load sensors to study in vivo joint loading.  相似文献   

10.
Factors inside and outside neurons control the process of axonal growth and regeneration. Recently, it has become apparent that neurons are determined intrinsically for their ability to grow axons. In the mammalian CNS, the intrinsic machinery of neurons that triggers the growth of axons during early embryonic stages is shut down at a certain point in development; as a consequence, axon elongation and regeneration cannot occur in postnatal life. The proto-oncogene Bcl-2 has been recognized to act as a key regulator for the program of axon elongation inside neurons. However, expressing the gene Bcl-2 in CNS neurons is not sufficient to induce nerve regeneration in the adult CNS, eliminating the inhibitory mechanism in the mature CNS environment is still required. Recently, the formation of glia scar has been reported to be the major limiting factor in the CNS environment that blocks nerve regeneration. These new discoveries challenge the classical view of nerve regeneration in the mammalian CNS. It opens up a new dimension in the study of the cellular and molecular mechanisms underlying neurodevelopmental and neurodegenerative diseases.  相似文献   

11.
Photoreceptor cells are the only retinal neurons that can absorb photons. Their degeneration due to some diseases or injuries leads to blindness. Retinal prostheses electrically stimulating surviving retinal cells and evoking a pseudo light sensation have been investigated over the past decade for restoring vision. Currently, a gene therapy approach is under development. Channelrhodopsin-2 derived from the green alga Chlamydomonas reinhardtii, is a microbial-type rhodopsin. Its specific characteristic is that it functions as a light-driven cation-selective channel. It has been reported that the channelrhodopsin-2 transforms inner light-insensitive retinal neurons to light-sensitive neurons. Herein, we introduce new strategies for restoring vision by using channelrhodopsins and discuss the properties of adeno-associated virus vectors widely used in gene therapy.  相似文献   

12.
Neuronal cells are highly vulnerable to ischemic insult. Because adult neurons are highly differentiated and cannot self-propagate, loss of neurons often results in functional deficits in mammalian brains. However, it has recently been shown that neurons and neuronal circuits exhibit protective and regenerative responses in a rodent model of experimental ischemia. At first, neurons respond by producing several protective proteins such as heat shock proteins (HSPs) after sublethal ischemia and then acquire tolerance against a subsequent ischemic insult (ischemic tolerance). Once neurons suffer irreversible injury, two repair processes, neurogenesis and synaptogenesis, are endogenously induced. Neuronal stem and (or) progenitor cells can proliferate in two brain areas in adult animals: the subventricular zone and the subgranular zone in the dentate gyrus. After ischemic insult, these stem (progenitor) cells proliferate and differentiate into neurons in the dentate gyrus of the hippocampus. Reactive synaptogenesis has been also observed in the injured brain following a period of long-term infarction, but it is unclear if it can compensate for disconnected circuits. Understanding the molecular mechanism underlying these protective and regenerative responses will be important in developing a new strategy for aimed at the augmentation of resistance against ischemic insult and the replacement of injured neurons and neuronal circuits.  相似文献   

13.
The capability of the mammalian brain to generate new neurons through the lifespan has gained much attention for the promise of new therapeutic possibilities especially for the aging brain. One of the brain regions that maintains a neurogenesis‐permissive environment is the dentate gyrus of the hippocampus. Here, new neurons are generated from a pool of multipotent neural progenitor cells to become fully functional neurons that are integrated into the brain circuitry. A growing body of evidence points to the fact that neurogenesis in the adult hippocampus is necessary for certain memory processes, and in mood regulation, while alterations in hippocampal neurogenesis have been associated with a myriad of neurological and psychiatric disorders. More recently, evidence has come to light that new neurons may differ in their vulnerability to environmental and disease‐related influences depending on the time during the life course at which they are exposed. Thus, it has been the topic of intense research in recent years. In this review, we will discuss the complex process and associated functional relevance of hippocampal neurogenesis during the embryonic/postnatal period and in adulthood. We consider the implications of hippocampal neurogenesis during the developmentally critical periods of adolescence and older age. We will further consider the literature surrounding hippocampal neurogenesis and its functional role during these critical periods with a view to providing insight into the potential of harnessing neurogenesis for health and therapeutic benefit.  相似文献   

14.
Particle-mediated ballistic delivery of fluorescent dyes has been recently used to label neuronal populations in a rapid and efficient fashion. Here we describe detailed protocols for this technique as well as recent improvements in its implementation. This technique allows rapid labeling of entire neurons in a Golgi-like manner after membranes of individual neurons are contacted by particles coated with lipophilic dyes. Neurons can be labeled by dyes of different colors at controlled densities to facilitate the study of structural interactions between cells. Furthermore, in conjunction with other histochemical labeling methods, the technique can be used to study changes in neuronal structures associated with pathologic processes in animal models or postmortem human brain. In addition to lipophilic dyes, water-soluble molecules such as calcium indicators can also be delivered efficiently with this technique. The method of ballistic delivery of indicators thus provides new avenues to probe the structure and function of the nervous system.  相似文献   

15.
In the adult brain, new neurons are continuously generated in the subventricular zone and dentate gyrus, but it is unknown whether these neurons can replace those lost following damage or disease. Here we show that stroke, caused by transient middle cerebral artery occlusion in adult rats, leads to a marked increase of cell proliferation in the subventricular zone. Stroke-generated new neurons, as well as neuroblasts probably already formed before the insult, migrate into the severely damaged area of the striatum, where they express markers of developing and mature, striatal medium-sized spiny neurons. Thus, stroke induces differentiation of new neurons into the phenotype of most of the neurons destroyed by the ischemic lesion. Here we show that the adult brain has the capacity for self-repair after insults causing extensive neuronal death. If the new neurons are functional and their formation can be stimulated, a novel therapeutic strategy might be developed for stroke in humans.  相似文献   

16.
What is the role of higher-order spike correlations for neuronal information processing? Common data analysis methods to address this question are devised for the application to spike recordings from multiple single neurons. Here, we present a new method which evaluates the subthreshold membrane potential fluctuations of one neuron, and infers higher-order correlations among the neurons that constitute its presynaptic population. This has two important advantages: Very large populations of up to several thousands of neurons can be studied, and the spike sorting is obsolete. Moreover, this new approach truly emphasizes the functional aspects of higher-order statistics, since we infer exactly those correlations which are seen by a neuron. Our approach is to represent the subthreshold membrane potential fluctuations as presynaptic activity filtered with a fixed kernel, as it would be the case for a leaky integrator neuron model. This allows us to adapt the recently proposed method CuBIC (cumulant based inference of higher-order correlations from the population spike count; Staude et al., J Comput Neurosci 29(1–2):327–350, 2010c) with which the maximal order of correlation can be inferred. By numerical simulation we show that our new method is reasonably sensitive to weak higher-order correlations, and that only short stretches of membrane potential are required for their reliable inference. Finally, we demonstrate its remarkable robustness against violations of the simplifying assumptions made for its construction, and discuss how it can be employed to analyze in vivo intracellular recordings of membrane potentials.  相似文献   

17.
Studies in non-neuronal cells show that c-Jun N-terminal kinases (JNK) play a key role in apoptotic cell death. In some neurons JNK is also thought to initiate cell death by the activation of c-Jun. JNK inhibition has been achieved pharmacologically by inhibiting upstream kinases, but there has been no direct demonstration that inhibition of JNK can prevent neuronal death. We have therefore examined whether the JNK binding domain (JBD) of JNK-interacting protein-1 (JIP-1, a scaffold protein and specific inhibitor of JNK) can inhibit c-Jun phosphorylation and support the survival of sympathetic neurons deprived of NGF. We show that expression of the JBD in >80% of neurons was sufficient to prevent the phosphorylation of c-Jun and its nuclear accumulation as well as abrogate neuronal cell death induced by NGF deprivation. JBD expression also preserved the capacity of mitochondria to reduce MTT. Interestingly, although the PTB domain of JIP was reported to interact with rhoGEF, expression of the JBD domain was sufficient to localize the protein to the membrane cortex and growth cones. Hence, JNK activation is a key event in apoptotic death induced by NGF withdrawal, where its point of action lies upstream of mitochondrial dysfunction.  相似文献   

18.
Surface electromyography (EMG) comprises a recording of electrical activity from the body surface generated by muscle fibres during muscle contractions. Its characteristics depend on the fibre membrane potentials and the neural activation signal sent from the motor neurons to the muscles. EMG has been classically used as the primary investigation tool in kinesiology studies in a variety of applications. More recently, surface EMG techniques have evolved from single-channel methods to high-density systems with hundreds of electrodes. High-density EMG recordings can be deconvolved to estimate the discharge times of spinal motor neurons innervating the recorded muscles, with algorithms that have been developed and validated in the last two decades. Within limits and with some variability across muscles, these techniques provide a non-invasive method to study relatively large populations of motor neurons in humans. Surface EMG is thus evolving from a peripheral measure of muscle electrical activity towards a neural recording and neural interfacing signal. These advances in technology have had a major impact on our fundamental understanding of the neural control of movement and have exposed new perspectives in neurotechnologies. Here we provide an overview and perspective of modern EMG technology, as derived from past achievements, and its impact in neurophysiology and neural engineering.  相似文献   

19.
The responses of cortical neurons are often characterized by measuring their spectro-temporal receptive fields (STRFs). The STRF of a cell can be thought of as a representation of its stimulus 'preference' but it is also a filter or 'kernel' that represents the best linear prediction of the response of that cell to any stimulus. A range of in vivo STRFs with varying properties have been reported in various species, although none in humans. Using a computational model it has been shown that responses of ensembles of artificial STRFs, derived from limited sets of formative stimuli, preserve information about utterance class and prosody as well as the identity and sex of the speaker in a model speech classification system. In this work we help to put this idea on a biologically plausible footing by developing a simple model thalamo-cortical system built of conductance based neurons and synapses some of which exhibit spike-time-dependent plasticity. We show that the neurons in such a model when exposed to formative stimuli develop STRFs with varying temporal properties exhibiting a range of heterotopic integration. These model neurons also, in common with neurons measured in vivo, exhibit a wide range of non-linearities; this deviation from linearity can be exposed by characterizing the difference between the measured response of each neuron to a stimulus, and the response predicted by the STRF estimated for that neuron. The proposed model, with its simple architecture, learning rule, and modest number of neurons (<1000), is suitable for implementation in neuromorphic analogue VLSI hardware and hence could form the basis of a developmental, real time, neuromorphic sound classification system.  相似文献   

20.
Neurogenesis in the hippocampal dentate gyrus occurs constitutively throughout postnatal life. Adult neurogenesis includes a multistep process that ends with the formation of a postmitotic and functionally integrated new neuron. During adult neurogenesis, various markers are expressed, including GFAP, nestin, Pax6, polysialic acid-neural cell adhesion molecule (PSA-NCAM), neuronal nuclei (NeuN), doublecortin, TUC-4, Tuj-1, and calretinin. Prosaposin is the precursor of saposins A–D; it is found in various organs and can be excreted. Strong prosaposin expression has been demonstrated in the developing brain including the hippocampus, and its neurotrophic activity has been proposed. This study investigated changes in prosaposin in the dentate gyrus of young and adult rats using double immunohistochemistry with antibodies to prosaposin, PSA-NCAM, and NeuN. Prosaposin immunoreactivity was intense in the dentate gyrus at postnatal day 3 (P3) and P7, but decreased gradually after P14. In the dentate gyrus at P28, immature PSA-NCAM-positive neurons localized exclusively in the subgranular zone were prosaposin-negative, whereas mature Neu-N-positive neurons were positive for prosaposin. Furthermore, these prosaposin-negative immature neurons were saposin B-positive, suggesting that the neurons take up and degrade prosaposin. In situ hybridization assays showed that prosaposin in the adult dentate gyrus is dominantly the Pro+9 type, a secreted type of prosaposin. These results imply that prosaposin secreted from mature neurons stimulates proliferation and maturation of immature neurons in the dentate gyrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号