首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
2.
Angiosperm phylogeny based on matK sequence information   总被引:2,自引:0,他引:2  
Plastid matK gene sequences for 374 genera representing all angiosperm orders and 12 genera of gymnosperms were analyzed using parsimony (MP) and Bayesian inference (BI) approaches. Traditionally, slowly evolving genomic regions have been preferred for deep-level phylogenetic inference in angiosperms. The matK gene evolves approximately three times faster than the widely used plastid genes rbcL and atpB. The MP and BI trees are highly congruent. The robustness of the strict consensus tree supercedes all individual gene analyses and is comparable only to multigene-based phylogenies. Of the 385 nodes resolved, 79% are supported by high jackknife values, averaging 88%. Amborella is sister to the remaining angiosperms, followed by a grade of Nymphaeaceae and Austrobaileyales. Bayesian inference resolves Amborella + Nymphaeaceae as sister to the rest, but with weak (0.42) posterior probability. The MP analysis shows a trichotomy sister to the Austrobaileyales representing eumagnoliids, monocots + Chloranthales, and Ceratophyllum + eudicots. The matK gene produces the highest internal support yet for basal eudicots and, within core eudicots, resolves a crown group comprising Berberidopsidaceae/Aextoxicaceae, Santalales, and Caryophyllales + asterids. Moreover, matK sequences provide good resolution within many angiosperm orders. Combined analyses of matK and other rapidly evolving DNA regions with available multigene data sets have strong potential to enhance resolution and internal support in deep level angiosperm phylogenetics and provide additional insights into angiosperm evolution.  相似文献   

3.
To study the inter- and infrafamilial phylogenetic relationships in the order Caryophyllales sensu lato (s.l.), ~930 base pairs of the matK plastid gene have been sequenced and analyzed for 127 taxa. In addition, these sequences have been combined with the rbcL plastid gene for 53 taxa and with the rbcL and atpB plastid genes as well as the nuclear 18S rDNA for 26 taxa to provide increased support for deeper branches. The red pigments of Corbichonia, Lophiocarpus, and Sarcobatus have been tested and shown to belong to the betacyanin class of compounds. Most taxa of the order are clearly grouped into two main clades (i.e., "core" and "noncore" Caryophyllales) which are, in turn, divided into well-defined subunits. Phytolaccaceae and Molluginaceae are polyphyletic, and Portulacaceae are paraphyletic, whereas Agdestidaceae, Barbeuiaceae, Petiveriaceae, and Sarcobataceae should be given familial recognition. Two additional lineages are potentially appropriate to be elevated to the family level in the future: the genera Lophiocarpus and Corbichonia form a well-supported clade on the basis of molecular and chemical evidence, and Limeum appears to be separated from other Molluginaceae based on both molecular and ultrastructural data.  相似文献   

4.
Phylogenetic relationships were examined within the "higher" Hamamelididae using 21 species representing eight families and related outgroups. Chloroplast DNA sequences encoding the matK gene (/1 kilobase) provided 258 informative nucleotide sites. Phylogenetic analysis of this variation produced one most parsimonious tree supporting three monophyletic groups. In this tree, Nothofagus was basal to a well supported clade of remaining "higher" hamamelids, in which Fagaceae, including Fagus, were sister to a clade of core "higher" hamamelids that share wind-pollination, bicarpellate flowers, granular pollen walls, and reduced pollen apertures. Within the core "higher" hamamelids three subclades were resolved, Myricaceae, (Casuarina-(Ticodendron-(Betulaceae))), and (Rhoiptelea-Juglandaceae). Each subclade was well supported but relationships among them were not. The basal position of Nothofagus within the matK tree is consistent with the fossil record of "higher" hamamelids in which Nothofagus pollen appears earlier than microfossils with affinities to other modern "higher" hamamelids. This placement supports the exclusion of Nothofagus from Fagaceae and suggests two hypotheses for the origin of the cupule. The cupule may be ancestral within "higher" hamamelids and subsequently lost in core members of the clade or there may have been two independent origins. It is suggested that the three clades (1) Nothofagaceae, (2) Fagaceae, and (3) Juglandaceae, Rhoiptelea, Myricaceae, Casuarina, Ticodendron, and Betulaceae be considered at the ordinal level and that traditional orders, such as Fagales sensu Cronquist (Fagaceae, Nothofagaceae, and Betulaceae) be abandoned. Comparative analyses of matK sequences with previously published rbcL sequences demonstrate that for the taxa considered here matK sequences produced trees with greater phylogenetic resolution and a higher consistency index.  相似文献   

5.
6.
Coding regions of the rbcL and matK genes of cp DNA and internal transcribed spacers (ITS) of nuclear ribosomal DNA were sequenced to study phylogenetic relationships within and among all four genera of Trilliaceae: Trillium, Paris, Daiswa and Kinugasa . The rbcL gene has evolved much slower than matK and in particular ITS; hence the phylogenetic trees based on the rbcL gene show a much lower resolution than trees based on either matK or ITS. The general topology of phylogenetic trees resulting from separate parsimony analyses of the matK and ITS sequences are relatively congruent, with the exception of the placement of T. pusillum . Both matK and ITS phylogenies reveal that T. rivale diverges at the base of the trees. In both trees, Paris, Daiswa and Kinugasa form a relatively weakly supported group. Within this group, the allo-octaploid Kinugasa japonica is the sister group of Daiswa species. The Paris–Daiswa – Kinugasa group, the major Trillium group, and T. undulatum and T. govanianum showed a loosely related topology, but their affinities are not evident according to these two molecular markers. However, phylogenetic analysis of amino acid sequences derived from matK shows that T. rivale together with clades T. undulatum–T. govanianum, Daiswa–Kinugasa and Paris is basally diverged as a sister group to the remainder of Trillium .  相似文献   

7.
连香树科及其近缘植物matK序列分析和系统学意义   总被引:5,自引:1,他引:4  
测定和分析了连香树科(Cercidiphyllaeeae)、交让木科(Daplmiphyllaceac)、金缕梅科(Hamamelidaceae)代表植物的叶绿体marK序列(5′端31bps除外),以木兰属作为外类群,应用邻接法构建分子系统树,结果表明:连香树科与水青树科的亲缘关系较远。连香树科、交让木科和金缕梅科形成了一个自展数据支持率(bootstrap)为100%的单系类群,其中金缕梅科枫香属(Liquidambar)、红花荷属(Rhodoleia)和金缕梅属(Hamamelis)虽构成了一个单系类群,但自展数据支持率仅为68%;连香树科与交让木科构成的单系分支自展数据支持率仅为53%。由于连香树科、交让木科、金缕梅科之间的进化距离相当短,表明这3个科之间亲缘关系密切,内部分支的自展数据支持率不高,表明它们之间准确的亲缘关系有待进一步研究。本研究结果与rbcL、aptB、18S rDNA序列分析结果相似,但自展数据支持率更高,表明marK序列分析可应用于较高等级分类群系统发育关系的研究。  相似文献   

8.
Apiaceae and Araliaceae (Apiales) represent a particularly troublesome example of the difficulty in understanding evolutionary relationships between tropical-temperate family pairs. Previous studies based on rbcL sequence data provided insights at higher levels, but were unable to resolve fully the family-pair relationship. In this study, sequence data from a more rapidly evolving gene, matK, was employed to provide greater resolution. In Apiales, matK sequences evolve an average of about two times faster than rbcL sequences. Results of phylogenetic analysis of matK sequences were first compared to those obtained previously from rbcL data; the two data sets were then combined and analyzed together. Molecular analyses confirm the polyphyly of apiaceous subfamily Hydrocotyloideae and suggest that some members of this subfamily are more closely related to Araliaceae than to other Apiaceae. The remainder of Apiaceae forms a monophyletic group with well-defined subclades corresponding to subfamilies Apioideae and Saniculoideae. Both the matK and the combined rbcL-matK analyses suggest that most Araliaceae form a monophyletic group, including all araliads sampled except Delarbrea and Mackinlaya. The unusual combination of morphological characters found in these two genera and the distribution of matK and rbcL indels suggest that these taxa may be the remnants of an ancient group of pro-araliads that gave rise to both Apiaceae and Araliaceae. Molecular data indicate that the evolutionary history of the two families is more complex than simple derivation of Apiaceae from within Araliaceae. Rather, the present study suggests that there are two well-defined "families," both of which may have been derived from a lineage (or lineages) or pro-araliads that may still have extant taxa.  相似文献   

9.
The sundew genus Drosera consists of carnivorous plants with active flypaper traps and includes nearly 150 species distributed mainly in Australia, Africa, and South America, with some Northern Hemisphere species. In addition to confused intrageneric classification of Drosera, the intergeneric relationships among the Drosera and two other genera in the Droseraceae with snap traps, Dionaea and Aldrovanda, are problematic. We conducted phylogenetic analyses of DNA sequences of the chloroplast rbcL gene for 59 species of Drosera, covering all sections except one. These analyses revealed that five of 11 sections, including three monotypic sections, are polyphyletic. Combined rbcL and 18S rDNA sequence data were used to infer phylogenetic relationships among Drosera, Dionaea, and Aldrovanda. This analysis revealed that all Drosera species form a clade sister to a clade including Dionaea and Aldrovanda, suggesting that the snap traps of Aldrovanda and Dionaea are homologous despite their morphological differences. MacClade reconstructions indicated that multiple episodes of aneuploidy occurred in a clade that includes mainly Australian species, while the chromosome numbers in the other clades are not as variable. Drosera regia, which is native to South Africa, and most species native to Australia, were clustered basally, suggesting that Drosera originated in Africa or Australia. The rbcL tree indicates that Australian species expanded their distribution to South America and then to Africa. Expansion of distribution to the Northern Hemisphere from the Southern Hemispere occurred in a few different lineages.  相似文献   

10.
As a basis for analysing the evolution of the carnivorous syndrome in Lentibulariaceae (Lamiales), phylogenetic reconstructions were conducted based on coding and non-coding chloroplast DNA (matK gene and flanking trnK intron sequences, totalling about 2.4 kb). A dense taxon sampling including all other major lineages of Lamiales was needed since the closest relatives of Lentibulariaceae and the position of "proto-carnivores" were unknown. Tree inference using maximum parsimony, maximum likelihood, and Bayesian approaches resulted in fully congruent topologies within Lentibulariaceae, whereas relationships among the different lineages of Lamiales were only congruent between likelihood and Bayesian optimizations. Lentibulariaceae and their three genera (Pinguicula, Genlisea, and Utricularia) are monophyletic, with Pinguicula being sister to a Genlisea-Utricularia clade. Likelihood and Bayesian trees converge on Bignoniaceae as sister to Lentibulariaceae, albeit lacking good support. The "proto-carnivores" (Byblidaceae, Martyniaceae) are found in different positions among other Lamiales but not as sister to the carnivorous Lentibulariaceae, which is also supported by Khishino-Hasegawa tests. This implies that carnivory and its preliminary stages ("proto-carnivores") independently evolved more than once among Lamiales. Ancestral states of structural characters connected to the carnivorous syndrome are reconstructed using the molecular tree, and a hypothesis on the evolutionary pathway of the carnivorous syndrome in Lentibulariaceae is presented. Extreme DNA mutational rates found in Utricularia and Genlisea are shown to correspond to their unusual nutritional specialization, thereby hinting at a marked degree of carnivory in these two genera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号