首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In tropical regions, protein supplementation is a common practice in dairy and beef farming. However, the effect of highly degradable protein in ruminal fermentation and microbial community composition has not yet been investigated in a systematic manner. In this work, we aimed to investigate the impact of casein supplementation on volatile fatty acids (VFA) production, specific activity of deamination (SAD), ammonia concentration and bacterial and archaeal community composition. The experimental design was a 4×4 Latin square balanced for residual effects, with four animals (average initial weight of 280±10 kg) and four experimental periods, each with duration of 29 days. The diet comprised Tifton 85 (Cynodon sp.) hay with an average CP content of 9.8%, on a dry matter basis. Animals received basal forage (control) or infusions of pure casein (230 g) administered direct into the rumen, abomasum or divided (50 : 50 ratio) in the rumen/abomasum. There was no differences (P>0.05) in ruminal pH and microbial protein concentration between supplemented v. non-supplemented animals. However, in steers receiving ruminal infusion of casein the SAD and ruminal ammonia concentration increased 33% and 76%, respectively, compared with the control. The total concentration of VFA increased (P<0.05) in steers receiving rumen infusion of casein. SAD and the microbial protein concentration did not vary significantly among treatments during the feeding cycle, but mean SAD values were greater in steers supplemented in the rumen and rumen/abomasum. Ruminal ammonia concentration was positively correlated with SAD in animals receiving ruminal infusion of casein. Polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed low similarity between treatments, animals and time of sample collection. Richness analysis and determination of the Shannon–Wiener index indicated no differences (P>0.05) in species richness and diversity of γ-proteobacteria, firmicutes and archaea between non-supplemented Nellore steers and steers receiving casein supplementation in the rumen. However, species richness and the Shannon–Wiener index were lower (P<0.05) for the phylum bacteroidetes in steers supplemented with casein in the rumen compared with non-supplemented animals. Venn diagrams indicated that the number of unique bands varied considerably among individual animals and was usually higher in number for non-supplemented steers compared with supplemented animals. These results add new knowledge about the effects of ruminal and postruminal protein supplementation on metabolic activities of rumen microbes and the composition of bacterial and archaeal communities in the rumen of steers.  相似文献   

2.
Rubber seed oil (RO) that is rich in polyunsaturated fatty acids (FA) can improve milk production and milk FA profiles of dairy cows; however, the responses of digestion and ruminal fermentation to RO supplementation in vivo are still unknown. This experiment was conducted to investigate the effect of RO and flaxseed oil (FO) supplementation on nutrients digestibility, rumen fermentation parameters and rumen FA profile of dairy cows. Forty-eight mid-lactation Holstein dairy cows were randomly assigned to one of four treatments for 8 weeks, including basal diet (CON) or the basal dietary supplemented with 4% RO, 4% FO or 2% RO plus 2% FO on a DM basis. Compared with CON, dietary oil supplementation improved the total tract apparent digestibility of DM, neutral detergent fibre and ether extracts ( P < 0.05). Oil treatment groups had no effects on ruminal digesta pH value, ammonia N and microbial crude protein ( P > 0.05), whereas oil groups significantly changed the volatile fatty acid (VFA) profile by increasing the proportion of propionate whilst decreasing total VFA concentration, the proportion of acetate and the ratio of acetate to propionate ( P < 0.05). However, there were no differences in VFA proportions between the three oil groups (P > 0.05). In addition, dietary oil supplementation increased the total unsaturated FA proportion in the rumen by enhancing the proportion of trans-11 C18:1 vaccenic acid (VA), cis-9, trans-11 conjugated linoleic acid (CLA) and α-linolenic acid (ALA) ( P < 0.05). These results indicate that dietary supplementation with RO and FO could improve nutrients digestibility, ruminal fermentation and ruminal FA profile by enhancing the VA, cis-9, trans-11 CLA and ALA composition of lactating dairy cows. These findings provide a theoretical basis for the application of RO in livestock production.  相似文献   

3.
The rumen microbial ecosystem is a complex system where rumen fermentation processes involve interactions among microorganisms. There are important relationships between diet and the ruminal bacterial composition. Thus, we investigated the ruminal fermentation characteristics and compared ruminal bacterial communities using tag amplicon pyrosequencing analysis in Yanbian yellow steers, which were fed linseed oil (LO) and propionate precursors. We used eight ruminally cannulated Yanbian yellow steers (510 ± 5.8 kg) in a replicated 4 × 4 Latin square design with four dietary treatments. Steers were fed a basal diet that comprised 80% concentrate and 20% rice straw (DM basis, CON). The CON diet was supplemented with LO at 4%. The LO diet was also supplemented with 2% dl-malate or 2% fumarate as ruminal precursors of propionate. Dietary supplementation with LO and propionate precursors increased ruminal pH, total volatile fatty acid concentrations, and the molar proportion of propionate. The most abundant bacterial operational taxonomic units in the rumen were related to dietary treatments. Bacteroidetes dominated the ruminal bacterial community and the genus Prevotella was highly represented when steers were fed LO plus propionate precursors. However, with the CON and LO diet plus malate or fumarate, Firmicutes was the most abundant phylum and the genus Ruminococcus was predominant. In summary, supplementing the diets of ruminants with a moderate level of LO plus propionate precursors modified the ruminal fermentation pattern. The most positive responses to LO and propionate precursors supplementation were in the phyla Bacteriodetes and Firmicutes, and in the genus Ruminococcus and Prevotella. Thus, diets containing LO plus malate or fumarate have significant effects on the composition of the rumen microbial community.  相似文献   

4.
Vegetable oils are used to increase energy density of dairy cow diets, although they can provoke changes in rumen bacteria populations and have repercussions on the biohydrogenation process. The aim of this study was to evaluate the effect of two sources of dietary lipids: soybean oil (SO, an unsaturated source) and hydrogenated palm oil (HPO, a saturated source) on bacterial populations and the fatty acid profile of ruminal digesta. Three non-lactating Holstein cows fitted with ruminal cannulae were used in a 3×3 Latin square design with three periods consisting of 21 days. Dietary treatments consisted of a basal diet (Control, no fat supplement) and the basal diet supplemented with SO (2.7% of dry matter (DM)) or HPO (2.7% of DM). Ruminal digesta pH, NH3–N and volatile fatty acids were not affected by dietary treatments. Compared with control and HPO, total bacteria measured as copies of 16S ribosomal DNA/ml by quantitative PCR was decreased (P<0.05) by SO. Fibrobacter succinogenes, Butyrivibrio proteoclasticus and Anaerovibrio lipolytica loads were not affected by dietary treatments. In contrast, compared with control, load of Prevotella bryantii was increased (P<0.05) with HPO diet. Compared with control and SO, HPO decreased (P<0.05) C18:2 cis n-6 in ruminal digesta. Contents of C15:0 iso, C18:11 trans-11 and C18:2 cis-9, trans-11 were increased (P<0.05) in ruminal digesta by SO compared with control and HPO. In conclusion, supplementation of SO or HPO do not affect ruminal fermentation parameters, whereas HPO can increase load of ruminal P. bryantii. Also, results observed in our targeted bacteria may have depended on the saturation degree of dietary oils.  相似文献   

5.
Eight multiparous periparturient Holstein cows fitted with ruminal cannulas were used in a split plot design to evaluate effects of monensin on ruminal volatile fatty acid (VFA) metabolism. Diets were supplemented with 300 mg/day of monensin, or no monensin, both prepartum and postpartum. Isotopic tracers, Na-1-13C-acetate (Ac), Na-1-13C-propionate (Pr), or Na-1-13C-butyrate (Bu) were used as markers to describe VFA kinetics in the rumen. The Windows version of SAAM software (WinSAAM) was used to develop a steady state VFA model. A 9-compartment model was adequate to comprehensively describe ruminal VFA metabolism. The main VFA compartments consisted of Ac, Pr and Bu. The model estimated lower Bu and Ac interconversions with monensin, postpartum (Bu to Ac; 0.14 versus 0.12; P=0.04, and Ac to Bu; 0.32 versus 0.25; P=0.11) compared to when measured prepartum. Results demonstrate that dilution studies employing stable isotopes of VFA can be used to provide information on VFA metabolism of the periparturient dairy cow. A time frame of 320 min of labeled VFA infusion employing a single injection allows accurate quantification of VFA metabolism in the rumen. Compartmental kinetic analysis of major VFA in the rumen indicate that monensin reduced about 0.125 the portion of the Ac that contributes to Bu by reducing movements of Bu originated carbons to the Ac pool. Monensin may affect certain biochemical pathways of interconversion of Bu and Ac in the rumen. Propionate kinetic data suggests that Pr behaves as a single pool in the rumen. Monensin did not affect Pr production in the rumen suggesting that monensin improves the metabolic status of the transition cow in a way other than increasing Pr production in the rumen.  相似文献   

6.
Four multiparous ruminally cannulated Holstein cows (mean bodyweight [BW] 615 kg) in mid-lactation (103 days in milk and 32 kg milk x d(-1) at start of the experiment) were used in an one-factorial experiment to evaluate the effects of fibre level (19, 24, 28, 32 and 39% physically effective NDF [peNDF] in dry matter [DM]) in diets consisting of hay and slowly degradable concentrate on rumen fermentation patterns and digesta particle size, under a constant intake level (146 g DM x kg(-0.75). The different fibre concentrations in the diet were achieved by adjusting the hay to concentrate ratio. The above-mentioned levels of peNDF corresponded to 70, 60, 50, 40 and 25% concentrate in diet DM, respectively, and followed the lactation curve of the cows. The ruminal pH was positively and linearly correlated to the percentage of fibre (peNDF, NDF or CF) in ration DM with R2 of 0.76-0.88 (p < 0.001) for solid digesta (particle-associated rumen fluid, PARL), and R2 of 0.26-0.29 (p < 0.05) for fluid digesta (free rumen liquid, FRL). The lowest fibre level in the diet (19% peNDF) or the highest level of concentrate (70% on DM basis) caused pH values lower than 6.0 at almost all sampling times only in PARL but not in FRL, and significantly increased the proportion of large particles in rumen digesta, which in turn was reflected by a depression of fibre digestibility. A level of 24% peNDF or 60% concentrate in the diet maintained the ruminal pH higher than 6.0 and 5.8 in FRL and PARL, respectively. Therefore, the inclusion of more than 60% slowly degradable concentrate in dairy cows diets fed approximately 18 kg DM x d(-1) is discouraged. Based on the response of ruminal solid digesta to dietary fibre, it can be concluded that the recommendations of feeding a structural value > or =1 per kg DM (De Brabander et al. 1999) underestimated, and 400 g CF per 100 kg BW (Hoffmann 1990) overestimated the evaluation of structural effectiveness of the present diet.  相似文献   

7.
In two separate studies, 60 beef heifers (379 kg BW) and 60 beef steers (348 kg BW) were randomly assigned to six treatments in 2×3 factorial arrangements. The treatments were with or without Synovex® implants combined with either a control diet or diets supplemented with 200 ppm Zn from ZnSO4 or zinc methionine (Zn-Met). Near the mid-point of the feeding periods, cattle were vaccinated with a modified live virus and subsequent titers and concentrations of immunoglobulin G (IgG) were measured. Liver and blood samples were obtained 1 week prior to the start of the experiments and at intervals during the experiments. In experiment 1, average daily gains of beef heifers were (P<0.05) affected by the interaction of implant and source of dietary Zn. Compared to control and ZnSO4 treatments, supplementation with Zn-Met increased (P<0.05) the concentration of Zn in serum. Antibody titers and concentrations of IgG in serum were highest (P<0.05) in heifers fed ZnSO4 compared to heifers fed the control or Zn-Met supplemented diets. The Synovex-H® implant reduced the concentrations of Zn and Cu in liver. In experiment 2, Synovex-S® implants improved (P<0.05) weight gains of steers supplemented with 200 ppm dietary Zn from ZnSO4 compared to non-implanted steers. However, the implant had no effect when Zn-Met was the dietary Zn source. The implant increased (P<0.05) concentrations of Zn in liver of steers supplemented with 200 ppm dietary Zn and reduced Zn in liver of steers fed the control diet. Implanted steers had higher (P<0.05) Cu status and IgG concentrations in serum than non-implanted steers. Steers supplemented with either ZnSO4 or Zn-Met had greater (P<0.05) concentrations of Zn in liver and plasma than steers fed the control diet. These results indicate both the level and source of Zn supplementation in diets of feedlot cattle affect their response to growth implants.  相似文献   

8.
Feces from cattle production are considered important sources of bacterial contamination of food and the environment. Little is known about the combined effects of arctic temperatures and fodder tannins on rumen and hindgut bacterial populations. Individual rumen liquor and rectal fecal samples from donor steers fed either alfalfa silage or sainfoin (Onobrychis viciifolia Scop.) silage and water ad libitum were collected weekly on the first three sampling days and fortnightly afterwards. The daily ambient temperatures were registered and averaged to weekly mean temperatures. Steers fed sainfoin silage had lower (P < 0.05) concentrations of branched-chain volatile fatty acids (VFA) than those fed alfalfa silage. All VFA concentrations were higher (P < 0.001) in rumen liquor samples than in fecal samples. The interaction of sample type and diet showed a significant effect (P < 0.05) on the proportions of the bacterial community that were from the phyla Proteobacteria and Verrucomicrobia. Ambient temperature had an indirect effect (P < 0.05) on the phylum Firmicutes, as it affected its proportional balance. The bacterial population diversity in samples appeared to decrease concurrently with the ambient temperature. The phylum Firmicutes explained the first principal component at 64.83 and 42.58% of the total variance in rumen liquor and fecal samples, respectively. The sample type had a larger effect on bacterial communities than diet and temperature. Certain bacterial populations seemed to be better adapted than others to environmentally adverse conditions, such as less access time to nutrients due to higher motility and rate of passage of digesta caused by extreme temperatures, or antimicrobials such as tannins, possibly due to an influence of their biogeographical location within the gut.  相似文献   

9.
Beef cattle are often fed high-concentrate diet (HCD) to achieve high growth rate. However, HCD feeding is strongly associated with metabolic disorders. Mild acid treatment of grains in HCD with 1% hydrochloric acid (HA) followed by neutralization with sodium bicarbonate (SB) might modify rumen fermentation patterns and microbiota, thereby decreasing the negative effects of HCD. This study was thus aimed to investigate the effects of treatment of corn with 1% HA and subsequent neutralization with SB on rumen fermentation and microbiota, inflammatory response and growth performance in beef cattle fed HCD. Eighteen beef cattle were randomly allocated to three groups and each group was fed different diets: low-concentrate diet (LCD) (concentrate : forage = 40 : 60), HCD (concentrate : forage = 60 : 40) or HCD based on treated corn (HCDT) with the same concentrate to forage ratio as the HCD. The corn in the HCDT was steeped in 1% HA (wt/wt) for 48 h and neutralized with SB after HA treatment. The animal trial lasted for 42 days with an adaptation period of 7 days. At the end of the trial, rumen fluid samples were collected for measuring ruminal pH values, short-chain fatty acids, endotoxin (or lipopolysaccharide, LPS) and bacterial microbiota. Plasma samples were collected at the end of the trial to determine the concentrations of plasma LPS, proinflammatory cytokines and acute phase proteins (APPs). The results showed that compared with the LCD, feeding the HCD had better growth performance due to a shift in the ruminal fermentation pattern from acetate towards propionate, butyrate and valerate. However, the HCD decreased ruminal pH and increased ruminal LPS release and the concentrations of plasma proinflammatory cytokines and APPs. Furthermore, feeding the HCD reduced bacterial richness and diversity in the rumen. Treatment of corn increased resistant starch (RS) content. Compared with the HCD, feeding the HCDT reduced ruminal LPS and improved ruminal bacterial microbiota, resulting in decreased inflammation and improved growth performance. In conclusion, although the HCD had better growth performance than the LCD, feeding the HCD promoted the pH reduction and the LPS release in the rumen, disturbed the ruminal bacterial stability and increased inflammatory response. Treatment of corn with HA in combination with subsequent SB neutralization increased the RS content and helped counter the negative effects of feeding HCD to beef steers.  相似文献   

10.
Microbial biohydrogenation of dietary poly‐unsaturated fatty acids (PUFA) to saturated fatty acids (SFA) in the rumen results in the high ratio of SFA/PUFA in ruminant products, such as meat and milk. In vitro, Butyrivibrio proteoclasticus‐related bacteria extensively biohydrogenate PUFA to SFA, yet their contribution in the rumen has not been confirmed. The aim of this study was to evaluate the role of Butyrivibrio proteoclasticus group bacteria in ruminal biohydrogenation and to assess the possible role of other bacteria. Fish oil at 0%, 1.5% and 3% dry matter intake was fed to eight Holstein × Friesian steers, in order to elicit changes in the extent of PUFA biohydrogenation. Fatty acid and B. proteoclasticus group 16S rRNA concentrations in rumen digesta were determined. Correlation between digesta 18:0 concentration and B. proteoclasticus group 16S rRNA concentration was low. Terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis (DGGE) coupled with multivariate statistics revealed that many terminal restriction fragments (T‐RFs) and DGGE bands were linked to cis‐9, trans‐11 conjugated linoleic acid (CLA), 18:1 trans‐11 and 18:0 ruminal concentrations. MiCA T‐RF predictive identification software showed that these linked T‐RFs were likely to originate from as yet uncultured bacteria classified as Prevotella, Lachnospiraceae incertae sedis, and unclassified Bacteroidales, Clostridiales and Ruminococcaceae. Sequencing of linked DGGE bands also revealed that as yet uncultured bacteria classified as Prevotella, Anaerovoax (member of the Lachnospiraceae incertae sedis family), and unclassified Clostridiales and Ruminococcaceae may play a role in biohydrogenation.  相似文献   

11.
Feed withdrawal (FW) is a frequent issue in open outdoor feedlot systems, where unexpected circumstances can limit the animals’ access to food. The relationship among fasting period, animal behaviour during feed reintroduction (FR) and acidosis occurrence has not been completely elucidated. Twenty steers fitted with rumen catheters were fed a high-concentrate diet (concentrate : forage ratio 85 : 15) and were challenged by a protocol of FW followed by FR. The animals were randomly assigned to one of the four treatments: FW for 12 h (T12), 24 h (T24), 36 h (T36) or no FW (control group) followed by FR. The steers’ behaviour, ruminal chemistry, structure of the ruminal microbial community, blood enzymes and metabolites and ruminal acidosis status were assessed. Animal behaviour was affected by the FW–FR challenge ( P < 0.05). Steers from the T12, T24 and T36 treatments showed a higher ingestion rate and a lower frequency of rumination. Although all animals were suspected to have sub-acute ruminal acidosis (SARA) prior to treatment, a severe case of transient SARA arose after FR in the T12, T24 and T36 groups. The ruminal pH remained below the threshold adopted for SARA diagnosis ( pH value = 5.6) for more than three consecutive hours (24, 7 and 19 h in the T12, T24 and T36 treatments, respectively). The FW–FR challenge did not induce clinical acute ruminal acidosis even though steers from the T36 treatment presented ruminal pH values that were consistent with this metabolic disorder (pH threshold for acute acidosis = 5.2). Total mixed ration reintroduction after the withdrawal period reactivated ruminal fermentation as reflected by changes in the fermentation end-products. Ruminal lactic acid accumulation in steers from the T24 and T36 treatments probably led to the reduction of pH in these groups. Both the FW and the FR phases may have altered the structure of the ruminal microbiota community. Whereas fibrolytic bacterial groups decreased relative abundance in the restricted animals, both lactic acid producer and utiliser bacterial groups increased ( P < 0.05). The results demonstrated a synchronisation between Streptococcus (lactate producer) and Megasphaera (lactate utiliser), as the relative abundance of both groups increased, suggesting that bacterial resilience may be central for preventing the onset of metabolic disturbances such as ruminal acidosis. A long-FW period (36 h) produced rumen pH reductions well below and lactic acid concentration increased well above the accepted thresholds for acute acidosis without any perceptible clinical signs.  相似文献   

12.
Four sheep, each prepared with a rumen fistula and reetrant cannula in the proximal duodenum, were used to study the effects of ruminal administration of nitrilotriacetic acid on solubilities of zinc, copper, manganese, and iron in rumen and duodenal digesta. The sheep received a pelleted diet and were dosed with 0, 300, 600 and 1200 microgram of nitrilotriacetic acid per gram of diet via the rumen fistula. Higher concentration of soluble zinc, manganese, and iron but not copper, were found in the rumen of the sheep when they were dosed with nitrilotriacetic acid. The concentrations increased with increasing dose of the acid. However, only the solubilty of iron was increased in the duodenal digesta. Concentrations of soluble zinc and manganese in the rumen increased, whereas copper decreased, during the first 2 h after feeding. The pattern was reversed thereafter. Changes in the concentrations of soluble during 6 h afther feeding were comparatively small. It is concluded that the solubilty of iron in the stomach of sheep is increased by ruminal administration of nitrilotriacetic acid.  相似文献   

13.
Red clover and fish oil (FO) are known to alter ruminal lipid biohydrogenation leading to an increase in the polyunsaturated fatty acid (PUFA) and conjugated linoleic acid (CLA) content of ruminant-derived foods, respectively. The potential to exploit these beneficial effects were examined using eight Hereford × Friesian steers fitted with rumen and duodenal cannulae. Treatments consisted of grass silage or red clover silage fed at 90% of ad libitum intake and FO supplementation at 0, 10, 20 or 30 g/kg diet dry matter (DM). The experiment was conducted with two animals per FO level and treatments formed extra-period Latin squares. Flows of fatty acids at the duodenum were assessed using ytterbium acetate and chromium ethylene diamine tetra-acetic acid as indigestible markers. Intakes of DM were higher (P < 0.001) for red clover silage than grass silage (5.98 v. 5.09 kg/day). There was a linear interaction effect (P = 0.004) to FO with a reduction in DM intake in steers fed red clover silage supplemented with 30 g FO/kg diet DM. Apparent ruminal biohydrogenation of C18:2n-6 and C18:3n-3 were lower (P < 0.001) for red clover silage than grass silage (0.83 and 0.79 v. 0.87 and 0.87, respectively), whilst FO increased the extent of biohydrogenation on both diets. Ruminal biohydrogenation of C20:5n-3 and C22:6n-3 was extensive on both silage diets, averaging 0.94 and 0.97, respectively. Inclusion of FO in the diet enhanced the flow of total CLA leaving the rumen with an average across silages of 0.22, 0.31, 0.41 and 0.44 g/day for 0, 10, 20 or 30 g FO/kg, respectively, with a linear interaction effect between the two silages (P = 0.03). FO also showed a dose-dependent increase in the flow of trans-C18:1 intermediates at the duodenum from 4.6 to 15.0 g/day on grass silage and from 9.4 to 22.5 g/day for red clover silage. Concentrations of trans-C18:1 with double bonds from Δ4-16 in duodenal digesta were all elevated in response to FO in both diets, with trans-11 being the predominant isomer. FO inhibited the complete biohydrogenation of dietary PUFA on both diets, whilst red clover increased the flow of C18:2n-6 and C18:3n-3 compared with grass silage. In conclusion, supplementing red clover silage-based diets with FO represents a novel nutritional strategy for enhancing the concentrations of beneficial fatty acids in ruminant milk and meat.  相似文献   

14.
《Small Ruminant Research》2009,82(2-3):119-125
This study was conducted to test the hypothesis that the supplementation of a high-concentrate diet with lipids, reportedly a good strategy for improving the nutritional value of ruminant-derived products, may not necessarily be associated with detrimental effects on ruminal fermentation in sheep. Four ruminally cannulated adult ewes were fed a high-concentrate diet, with no oil (Control diet), for a 14-day adaptation period. Afterwards, they were fed the same basal diet but supplemented with sunflower oil [20 g/kg fresh matter (FM)] and fish oil (10 g/kg FM) (SOFO diet) for a further 11 days, to investigate the impact of the addition of oils on the ruminal fermentation of the diet. On days 0 (Control), 3 and 10 of the experimental period rumen fluid was sampled at 0, 1.5, 3, 6 and 9 h after the morning feeding, for analysis of pH, and ammonia, lactate and total volatile fatty acid (VFA) concentrations. Alfalfa hay was incubated in situ, using the nylon bag technique, for 12 and 24 h to examine the effect of oil supplementation on ruminal disappearance of dry matter (DM), crude protein (CP) and neutral-detergent fibre (NDF). On days 0 and 11, rumen fluid was collected just before the morning feeding and used to incubate alfalfa hay and the Control and SOFO diets by means of the in vitro gas production technique. The mean concentrations of acetate (87.8 mmol/L vs. 73.7 mmol/L) and butyrate (21.2 mmol/L vs. 17.7 mmol/L) were reduced by oil supplementation (P < 0.05) and the total VFA showed a tendency (P = 0.098) to be lower with the SOFO diet (139.0 mmol/L vs. 122.1 mmol/L). However, none of the other in vivo ruminal fermentation parameters were affected by the treatment (P > 0.10). The oil supplementation affected neither in situ rumen disappearance of DM, CP and NDF of alfalfa hay, nor rates of gas production (P > 0.10). On the other hand, a little, but significant reduction in cumulative gas production was observed when the experimental diets were incubated with rumen fluid derived from animals fed the oil-rich diet (P < 0.05).Overall, the results suggest that the supplementation of high-concentrate diets with sunflower oil (20 g/kg FM) plus fish oil (10 g/kg FM) had little effect on ruminal fermentation and therefore its use to improve the nutritional value of ruminant-derived products cannot be precluded.  相似文献   

15.
Alpine forages are assumed to have specific effects on ruminal digestion when fed to cattle. These effects were investigated in an experiment from two perspectives, either by using such forages as a substrate for incubation or as feed for a rumen fluid donor cow. In total, six 24-h in vitro batch culture runs were performed. Rumen fluid was collected from a non-lactating donor cow after having grazed pastures at ∼2000 m above sea level for 2, 6 and 10 weeks. These ‘alpine runs’ were compared with three lowland samplings from before and 2 and 6 weeks after the alpine grazing where a silage–concentrate mix was fed. In each run, nine replicates of four forages each were incubated. These forages differed in type and origin (alpine hay, lowland ryegrass hay, grass–maize silage mix, pure hemicellulose) as well as in the content of nutrients. Concentrations of phenolic compounds in the incubated forages were (g/kg dry matter (DM)): 20 (tannin proportion: 0.47), 8 (0.27), 15 (0.52) and 0 (0), respectively. Crude protein was highest in the silage mix and lowest with hemicellulose, whereas the opposite was the case for fiber. The total phenol contents (g/kg DM) for the high altitude and the lowland diet of the donor cow were 27 (tannins: 0.50 of phenols) and 12 (0.27), respectively. Independent of the origin of the rumen fluid, the incubation with alpine hay decreased (P < 0.05) bacterial counts, fermentation gas amount, volatile fatty acid (VFA) production as well as ammonia and methane concentrations in fermentation gas (the latter two being not lower when compared with hemicellulose). Alpine grazing of the cow in turn increased (P < 0.001) bacterial counts and, to a lesser extent, acetate proportion compared with lowland feeding. Further, alpine grazing decreased protozoal count (P < 0.05) and VFA production (P < 0.001) to a small extent, whereas methane remained widely unchanged. There were interactions (P < 0.05) between forage type incubated and feeding period of the donor cow in protozoal counts, acetate:propionate ratio, fermentation gas production and its content of methane, in vitro organic matter digestibility and metabolizable energy. Although increased phenolic compounds were the most consistent common property of the applied alpine forages, a clear attribution to certain effects was not possible in this study. As a further result, adaptation (long-term for donor cow, short term for 24 h incubations) appears to influence the expression of alpine forage effects in ruminal fermentation.  相似文献   

16.
A mature dairy cow was transitioned from a high forage (100% forage) to a high-grain (79% grain) diet over seven days. Continuous ruminal pH recordings were utilized to diagnose the severity of ruminal acidosis. Additionally, blood and rumen papillae biopsies were collected to describe the structural and functional adaptations of the rumen epithelium. On the final day of the grain challenge, the daily mean ruminal pH was 5.41 ± 0.09 with a minimum of 4.89 and a maximum of 6.31. Ruminal pH was under 5.0 for 130 minutes (2.17 hours) which is characterized as the acute form of ruminal acidosis in cattle. The grain challenge increased blood beta-hydroxybutyrate by 1.8 times and rumen papillae mRNA expression of 3-hydroxy-3-methylglutaryl-coenzyme A synthase by 1.6 times. Ultrastructural and histological adaptations of the rumen epithelium were imaged by scanning electron and light microscopy. Rumen papillae from the high grain diet displayed extensive sloughing of the stratum corneum and compromised cell adhesion as large gaps were apparent between cells throughout the strata. This case report represents a rare documentation of how the rumen epithelium alters its function and structure during the initial stage of acute acidosis.  相似文献   

17.
Four rumen-fistulated steers, randomly assigned to two groups (control and salinomycin fed) were used to monitor the changes in rumen microbial populations and volatile fatty acids (VFA) concentrations associated with feeding salinomycin (0.22 mg X kg-1 X day-1). Steers were adapted to an alfalfa hay and grain (80:20) diet before supplementing the diet with salinomycin, and then the diet was changed to 50:50 and 20:80 ratios of alfalfa hay to grain at 2-week intervals. Rumen samples for total and selective enumeration of anaerobic bacteria. VFA analysis, and enumeration of protozoa were collected during the 80:20 alfalfa hay-to-grain diet before salinomycin feeding, and during the 80:20, 50:50, and 20:80 hay-to-grain diets with salinomycin. At each sampling period, rumen samples were collected at 3 h after feeding on three consecutive days. Salinomycin feeding had no effect on rumen pH and total VFA concentration. The acetate-to-propionate ratio was significantly lower in salinomycin-fed steers than in the control. The molar proportion of butyrate increased in both control and salinomycin-fed steers. Total anaerobic bacterial counts were lower in salinomycin-fed steers than in the control steers after 8 weeks of salinomycin feeding. Salinomycin-resistant bacteria increased from 7.6 to 15.6% in salinomycin-fed steers but remained unchanged in control steers. Salinomycin had no effect on cellulolytic and lactate-utilizing bacteria, but the proportion of amylolytic bacteria was higher in salinomycin-fed steers than in control steers. The total number of protozoa decreased initially in salinomycin-fed steers. The initial reduction was due to reduced numbers of Entodinium species. Holotrichs were unaffected by salinomycin feeding.  相似文献   

18.
Twelve ruminally cannulated cattle, adapted to forage or grain diet with or without monensin, were used to investigate the effects of diet and monensin on concentration and duration of ruminal persistence and fecal shedding of E. coli O157:H7. Cattle were ruminally inoculated with a strain of E. coli O157:H7 (10(10) CFU/animal) made resistant to nalidixic acid (Nal(r)). Ruminal and fecal samples were collected for 11 weeks, and then cattle were euthanized and necropsied and digesta from different gut locations were collected. Samples were cultured for detection and enumeration of Nal(r) E. coli O157:H7. Cattle fed forage diets were culture positive for E. coli O157:H7 in the feces for longer duration (P < 0.05) than cattle fed a grain diet. In forage-fed cattle, the duration they remained culture positive for E. coli O157:H7 was shorter (P < 0.05) when the diet included monensin. Generally, ruminal persistence of Nal(r) E. coli O157:H7 was not affected by diet or monensin. At necropsy, E. coli O157:H7 was detected in cecal and colonic digesta but not from the rumen. Our study showed that cattle fed a forage diet were culture positive longer and with higher numbers than cattle on a grain diet. Monensin supplementation decreased the duration of shedding with forage diet, and the cecum and colon were culture positive for E. coli O157:H7 more often than the rumen of cattle.  相似文献   

19.
Rumen microbial changes in cattle fed diets with or without salinomycin   总被引:3,自引:0,他引:3  
Four rumen-fistulated steers, randomly assigned to two groups (control and salinomycin fed) were used to monitor the changes in rumen microbial populations and volatile fatty acids (VFA) concentrations associated with feeding salinomycin (0.22 mg X kg-1 X day-1). Steers were adapted to an alfalfa hay and grain (80:20) diet before supplementing the diet with salinomycin, and then the diet was changed to 50:50 and 20:80 ratios of alfalfa hay to grain at 2-week intervals. Rumen samples for total and selective enumeration of anaerobic bacteria. VFA analysis, and enumeration of protozoa were collected during the 80:20 alfalfa hay-to-grain diet before salinomycin feeding, and during the 80:20, 50:50, and 20:80 hay-to-grain diets with salinomycin. At each sampling period, rumen samples were collected at 3 h after feeding on three consecutive days. Salinomycin feeding had no effect on rumen pH and total VFA concentration. The acetate-to-propionate ratio was significantly lower in salinomycin-fed steers than in the control. The molar proportion of butyrate increased in both control and salinomycin-fed steers. Total anaerobic bacterial counts were lower in salinomycin-fed steers than in the control steers after 8 weeks of salinomycin feeding. Salinomycin-resistant bacteria increased from 7.6 to 15.6% in salinomycin-fed steers but remained unchanged in control steers. Salinomycin had no effect on cellulolytic and lactate-utilizing bacteria, but the proportion of amylolytic bacteria was higher in salinomycin-fed steers than in control steers. The total number of protozoa decreased initially in salinomycin-fed steers. The initial reduction was due to reduced numbers of Entodinium species. Holotrichs were unaffected by salinomycin feeding.  相似文献   

20.
The aim of this work was to determine whether reductive acetogenesis can provide an alternative to methanogenesis in the rumen. Gnotobiotic lambs were inoculated with a functional rumen microbiota lacking methanogens and reared to maturity on a fibrous diet. Lambs with a methanogen-free rumen grew well, and the feed intake and ruminal volatile fatty acid concentrations for lambs lacking ruminal methanogens were lower but not markedly dissimilar from those for conventional lambs reared on the same diet. A high population density (10(7) to 10(8) cells g(-1)) of ruminal acetogens slowly developed in methanogen-free lambs. Sulfate- and fumarate-reducing bacteria were present, but their population densities were highly variable. In methanogen-free lambs, the hydrogen capture from fermentation was low (28 to 46%) in comparison with that in lambs containing ruminal methanogens (>90%). Reductive acetogenesis was not a significant part of ruminal fermentation in conventional lambs but contributed 21 to 25% to the fermentation in methanogen-free meroxenic animals. Ruminal H(2) utilization was lower in lambs lacking ruminal methanogens, but when a methanogen-free lamb was inoculated with a methanogen, the ruminal H(2) utilization was similar to that in conventional lambs. H(2) utilization in lambs containing a normal ruminal microflora was age dependent and increased with the animal age. The animal age effect was less marked in lambs lacking ruminal methanogens. Addition of fumarate to rumen contents from methanogen-free lambs increased H(2) utilization. These findings provide the first evidence from animal studies that reductive acetogens can sustain a functional rumen and replace methanogens as a sink for H(2) in the rumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号