首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Mammalian and yeast hexokinases were reported to be reversibly inhibited by fructose 2,6-bisphosphate in the presence of cytosolic proteins (H. Niemeyer, C. Cerpa, and E. Rabajille (1987) Arch. Biochem. Biophys. 257, 17-26). Reinvestigation of this finding using a radioassay with [14C]glucose as substrate showed no effect of fructose 2,6-bisphosphate on hexokinase activity of rat liver cytosols. Detailed reexamination of the spectrophotometric assay resulted in the observation that the fructose 2,6-bisphosphate-dependent inhibition was a function of the cytosolic phosphoglucose isomerase and phosphofructokinase activities compared to the amount of glucose-6-phosphate dehydrogenase used as auxiliary enzyme. The diminution or loss of the fructose 2,6-bisphosphate-dependent inhibition produced in aged cytosols was restored by addition of crystalline muscle phosphofructokinase, as well as by decreasing the amount of glucose-6-phosphate dehydrogenase in the assay. When phosphoglucose isomerase, phosphofructokinase, and hexokinase activities were separated by DEAE-chromatography of liver cytosol, no fructose 2,6-bisphosphate-dependent inhibition of hexokinase was found in any single fraction of the chromatogram. However, combination of fractions containing both phosphoglucose isomerase and phosphofructokinase displayed the fructose 2,6-bisphosphate-dependent inhibition on either endogenous hexokinase or added yeast hexokinase. From these results we conclude that the activation of phosphofructokinase elicited by fructose 2,6-bisphosphate is responsible for the hexokinase inhibition observed in the coupled spectrophotometric assay.  相似文献   

2.
Kinetic data have been collected suggesting that heterotropic activation by fructose 2,6-bisphosphate and AMP is a result not only of the relief of allosteric inhibition by ATP but is also the result of an increase in the affinity of phosphofructokinase for fructose 6-phosphate. Modification of the Ascaris suum phosphofructokinase at the ATP inhibitory site produces a form of the enzyme that no longer has hysteretic time courses or homotropic positive (fructose 6-phosphate) cooperativity or substrate inhibition (ATP) (Rao, G.S. J., Wariso, B.A., Cook, P.F., Hofer, H.W., and Harris, B.G. (1987a) J. Biol. Chem. 262, 14068-14073). This form of phosphofructokinase is Michaelis-Menten in its kinetic behavior but is still activated by fructose 2,6-bisphosphate and AMP and by phosphorylation using the catalytic subunit of cyclic AMP-dependent protein kinase (cAPK). Fructose 2,6-bisphosphate activates by decreasing KF-6-P by about 15-fold and has an activation constant of 92 nM, while AMP decreases KF-6-P about 6-fold and has an activation constant of 93 microM. Double activation experiments suggest that fructose 2,6-bisphosphate and AMP are synergistic in their activation. The desensitized form of the enzyme is phosphorylated by cAPK and has an increased affinity for fructose 6-phosphate in the absence of MgATP. The increased affinity results in a change in the order of addition of reactants from that with MgATP adding first for the nonphosphorylated enzyme to addition of fructose 6-phosphate first for the phosphorylated enzyme. The phosphorylated form of the enzyme is also still activated by fructose 2,6-bisphosphate and AMP.  相似文献   

3.
1. Regulation of phosphofructokinase in rat submandibular gland was non-Michaelis-Menten type at physiological pH. 2. At pH 7.3, ATP played a dual role on phosphofructokinase acting as a substrate and inhibitor at high concentration of ATP. 3. The activator of phosphofructokinase was present in cytosol fraction, and its properties were resemble to those of fructose 2,6-bisphosphate. 4. Both the activator and authentic fructose 2,6-bisphosphate relieved the inhibition of phosphofructokinase by ATP, and increased the affinity for fructose 6-phosphate. 5. Concentration of fructose 2,6-bisphosphate in rat submandibular gland was 8.22 nmol/g tissue, and which was about the half of that in liver. 6. Phosphofructokinase in rat submandibular gland was found to be regulated synergistically by ATP, fructose 6-phosphate and fructose 2,6-bisphosphate.  相似文献   

4.
The glycolytic flux and the regulation of phosphofructokinase (PFK) activity by fructose 2,6-bisphosphate and covalent modification was investigated in isolated ventricles of land snail Helix lucorum perfused with or without serotonin. Serotonin evoked a significant increase in the level of glycolytic intermediates and a threefold increase of glycolytic flux. Studies of saturation curves of PFK for the substrate fructose 6-phosphate at pH similar to intracellular pH of heart muscle showed that serotonin increases enzyme sensitivity to activation by fructose 6-phosphate. Moreover, PFK preparations from ventricles perfused with serotonin exhibited lower K a values for the activators AMP and fructose 2,6-bisphosphate, compared with the enzyme preparations from serotonin-untreated ventricles. The results suggest that PFK was converted to a more active form when exposed to serotonin. In vitro experiments of PFK phosphorylation showed that the conversion of the enzyme to a more active form was possibly due to its phosphorylation by an endogenous cyclic-AMP-dependent protein kinase. The concentration of fructose 2,6-bisphosphate increased in serotonin-treated ventricles and it exerted a synergistic effect with AMP on the activation of PFK. The bound fraction of glycolytic enzymes increased in the serotonin-treated ventricles only after the 4th min of perfusion. The results suggest that the stimulation of glycolytic flux in the ventricles of H. lucorum in the first minutes of perfusion with serotonin was partly due to the activation of PFK via enzyme molecule covalent modification and to increase of fructose 2,6-bisphosphate. Accepted: 8 April 1997  相似文献   

5.
Preclimacteric bananas fruits were treated for 12 h with ethylene to induce the climacteric rise in respiration. One day after the end of the hormonal treatment, the two activities of the bifunctional enzyme, phosphofructokinase 2/fructose-2,6-bisphosphatase started to increase to reach fourfold their initial value 6 days later. By contrast, the activities of the pyrophosphate-dependent and of the ATP-dependent 6-phosphofructo-1-kinases remained constant during the whole experimental period, the first one being fourfold greater than the second. The concentrations of fructose 2,6-bisphosphate and of fructose 1,6-bisphosphate increased in parallel during 4 days and then slowly decreased, the second one being always about 100-fold greater than the first. The change in fructose 2,6-bisphosphate concentration can be partly explained by the rise of the bifunctional enzyme, but also by an early increase in the concentration of fructose 6-phosphate, the substrate of all phosphofructokinases, and also by the decrease in the concentration of glycerate 3-phosphate, a potent inhibitor of phosphofructokinase 2. The burst in fructose 2,6-bisphosphate and the activity of the pyrophosphate-dependent phosphofructokinase, which is in banana the only enzyme known to be sensitive to fructose 2,6-bisphosphate, can explain the well-known increase in fructose 1,6-bisphosphate which occurs during ripening.  相似文献   

6.
To clarify the physiological role of fructose 2,6-bisphosphate in the perinatal switching of myocardial fuels from carbohydrate to fatty acids, the kinetic effects of fructose 2,6-bisphosphate on phosphofructokinase purified from fetal and adult rat hearts were compared. For both enzymes at physiological pH and ATP concentrations, 1 microM fructose 2,6-bisphosphate induced a greater than 10-fold reduction in S0.5 for fructose 6-phosphate and it completely eliminated subunit cooperativity. Fructose 2,6-bisphosphate may thereby reduce the influence of changes in fructose 6-phosphate concentration on phosphofructokinase activity. Based on double-reciprocal plots and ATP inhibition studies, adult heart phosphofructokinase activity is more sensitive to physiological changes in ATP and citrate concentrations than to changes in fructose 2,6-bisphosphate concentrations. Fetal heart phosphofructokinase is less sensitive to ATP concentration above 5 mM and equally sensitive to citrate inhibition. The fetal enzyme has up to a 15-fold lower affinity for fructose 2,6-bisphosphate, rendering it more sensitive to changes in fructose 2,6-bisphosphate concentration than adult heart phosphofructokinase. Together, these factors allow greater phosphofructokinase activity in fetal heart while retaining sensitive metabolic control. In both fetal and adult heart, fructose 2,6-bisphosphate is primarily permissive: it abolishes subunit cooperativity and in its presence phosphofructokinase activity is extraordinarily sensitive to both the energy balance of the cell as reflected in ATP concentration and the availability of other fuels as reflected in cytosolic citrate concentration.  相似文献   

7.
Fructose 2,6-bisphosphate. A new activator of phosphofructokinase   总被引:13,自引:0,他引:13  
A new activator of rat liver phosphofructokinase was partially purified from rat hepatocyte extracts by DEAE-Sephadex chromatography. The activator, which eluted in the sugar diphosphate region, was sensitive to acid treatment but resistant to heating in alkali. Mild acid hydrolysis resulted in the appearance of a sugar monophosphate which was identified as fructose 6-phosphate by gas chromatography/mass spectroscopy. These observations suggest that the activator is fructose 2,6-bisphosphate. This compound was synthesized by first reacting fructose 1,6-bisphosphate with dicyclohexylcarbodiimide and then treating the cyclic intermediate with alkali. The structure of the synthetic compound was definitively identified as fructose 2,6-bisphosphate by 13C NMR spectroscopy. Fructose 2,6-bisphosphate had properties identical with those of the activator purified from hepatocyte extracts. It activated both the rat liver and rabbit skeletal muscle enzyme in the 0.1 microM range and was several orders of magnitude more effective than fructose 1,6-bisphosphate. Fructose 2,6-bisphosphate was not a substrate for aldolase or fructose 1,6-bisphosphatase. It is likely that this new activator is an important physiologic factor of phosphofructokinase in vivo.  相似文献   

8.
Phosphofructokinase was purified from muscle tissue of two different molluscs, edible snails, Helix pomatia (gastropoda), and mussels, Mytilus edulis (bivalvia). Under denaturing conditions, both enzymes had a molecular mass of 82 kDa. In the presence of ATP-Mg2+, the enzymes were rapidly phosphorylated in vitro by the catalytic subunit of cyclic AMP (cAMP)-dependent protein kinase purified from snail muscle and also by the C subunit of protein kinase from bovine heart. The extent of phosphorylation was 0.6 and 0.5 phosphate residues per subunit for the snail and the mussel phosphofructokinase, respectively. Phosphorylation of both phosphofructokinases effected a decrease in ATP inhibition at neutral or slightly acidic pH values and increased the affinity for fructose 6-phosphate. The resulting activation in the presence of suboptimum fructose 6-phosphate concentrations was more distinct for the snail enzyme. In addition, phosphorylated phosphofructokinase from mussels exhibited a marked increase in Vmax when activated by either 5'-AMP or fructose 2,6-bisphosphate.  相似文献   

9.
Phosphofructokinase 2 from Saccharomyces cerevisiae was purified 8500-fold by chromatography on blue Trisacryl, gel filtration on Superose 6B and chromatography on ATP-agarose. Its apparent molecular mass was close to 600 kDa. The purified enzyme could be activated fivefold upon incubation in the presence of [gamma-32P]ATP-Mg and the catalytic subunit of cyclic-AMP-dependent protein kinase from beef heart; there was a parallel incorporation of 32P into a 105-kDa peptide and also, but only faintly, into a 162-kDa subunit. A low-Km (0.1 microM) fructose-2,6-bisphosphatase could be identified both by its ability to hydrolyze fructose 2,6-[2-32P]bisphosphate and to form in its presence an intermediary radioactive phosphoprotein. This enzyme was purified 300-fold, had an apparent molecular mass of 110 kDa and was made of two 56-kDa subunits. It was inhibited by fructose 6-phosphate (Ki = 5 microM) and stimulated 2-3-fold by 50 mM benzoate or 20 mM salicylate. Remarkably, and in deep contrast to what is known of mammalian and plant enzymes, phosphofructokinase 2 and the low-Km fructose-2,6-bisphosphatase clearly separated from each other in all purification procedures used. A high-Km (approximately equal to 100 microM), apparently specific, fructose 2,6-bisphosphatase was separated by anion-exchange chromatography. This enzyme could play a major role in the physiological degradation of fructose 2,6-bisphosphate, which it converts to fructose 6-phosphate and Pi, because it is not inhibited by fructose 6-phosphate, glucose 6-phosphate or Pi. Several other phosphatases able to hydrolyze fructose 2,6-bisphosphate into a mixture of fructose 2-phosphate, fructose 6-phosphate and eventually fructose were identified. They have a low affinity for fructose 2,6-bisphosphate (Km greater than 50 microM), are most active at pH 6 and are deeply inhibited by inorganic phosphate and various phosphate esters.  相似文献   

10.
Phosphofructokinase from the flight muscle of bumblebee was purified to homogeneity and its molecular and catalytic properties are presented. The kinetic behavior studies at pH 8.0 are consistent with random or compulsory-order ternary complex. At pH 7.4 the enzyme displays regulatory behavior with respect to both substrates, cooperativity toward fructose 6-phosphate, and inhibition by high concentration of ATP. Determinations of glycolytic intermediates in the flight muscle of insects exposed to low and normal temperatures showed statistically significant increases in the concentrations of AMP, fructose 2,6-bisphosphate, and glucose 6-phosphate during flight at 25 degrees C or rest at 5 degrees C. Measuring the activity of phosphofructokinase and fructose 1,6-bisphosphatase at 25 and 7.5 degrees C, in the presence of physiological concentrations of substrates and key effectors found in the muscle of bumblebee kept under different environmental temperatures and activity levels, suggests that the temperature dependence of fructose 6-phosphate/fructose 1,6-bisphosphate cycling may be regulated by fluctuation of fructose 2,6-bisphosphate concentration and changes in the affinity of both enzymes for substrates and effectors. Moreover, in the presence of in vivo concentrations of substrates, phosphofructokinase is inactive in the absence of fructose 2,6-bisphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号