首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study quantified the levels of airborne microorganisms in six swine farms with more than 10,000 pigs in subtropical Taiwan. We evaluated breeding, growing, and finishing stalls, which were primarily open-air buildings, as well as partially enclosed farrowing and nursery piggeries. Airborne culturable bacteria, gram-negative bacteria, and fungi were placed on appropriate media by using an all-glass impinger or single-stage Andersen microbial sampler. Results showed that mean concentrations of culturable bacteria and gram-negative bacteria were 3.3 × 105 and 143.7 CFU/m3, respectively. The concentration of airborne culturable fungi was about 103 CFU/m3, with Cladosporium the predominant genus. The highest airborne levels of culturable bacteria and gram-negative bacteria were identified in the finishing units. The air of the nursery stalls was the least contaminated with culturable and gram-negative bacteria. Irregular and infrequent cleaning, high pig density, no separation of wastes from pen floors, and accumulation of water as a result of the processes for cleaning and reducing pig temperature possibly compromise the benefits of the open characteristic of the finishing units with respect to airborne bacterial concentration.  相似文献   

2.
This study investigates the exposure of workers to biological particles in a poultry litter burning plant in operation. The microorganism concentrations were examined at different workplaces during procedures leading to increased emissions. The concentrations of culturable airborne mesophilic, xerophilic and thermophilic microorganisms in the ambient air were tested inside and outside of the burning plant using two different methods of measuring. The focus of this study was on the quantitative evaluation of culturable bacteria as well as the quantitative and qualitative evaluation of gram-negative bacteria, fungi and thermophilic actinomycetes. The maximum airborne concentrations were found in the delivery hall. Mesophilic bacteria concentrations reached up to 1.7 × 106 CFU/m3; gram-negative bacteria up to 9.1 × 102 CFU/m3. Fungal propagule concentrations for xerophilic fungi were between 1.2 × 103 and 2.9 × 104 CFU/m3 and for mesophilic fungi between 4.4 × 102 and 2.9 × 104 CFU/m3. Among fungi, Aspergillus niger, Eurotium herbariorum and Scopulariopsis brevicaulis species were dominant. Thermophilic actinomycetes reached airborne concentrations of 8.7 × 104 CFU/m3, with increased concentrations of the pathogens causing extrinsic allergic alveolitis. The high concentrations of airborne microorganisms in poultry litter burning plants and the potential hazard of the intake of microorganisms including potential pathogens require the introduction of consistent measures in both technical areas and personnel management.  相似文献   

3.
Several studies have showed an association between the work in waste treatment plants and occupational health problems such as irritation of skin, eyes and mucous membranes, pulmonary diseases, gastrointestinal problems and symptoms of organic dust toxic syndrome (ODTS). These symptoms have been related to bioaerosol exposure. The aim of this study was to investigate the occupational exposure to biological agents in a plant sorting source-separated packages (plastics materials, ferric and non-ferric metals) household waste. Airborne samples were collected with M Air T Millipore sampler. The concentration of total fungi and bacteria and gram-negative bacteria were determined and the most abundant genera were identified. The results shown that the predominant airborne microorganisms were fungi, with counts greater than 12,000 cfu/m(3) and gram-negative bacteria, with a environmental concentration between 1,395 and 5,280 cfu/m(3). In both cases, these concentrations were higher than levels obtained outside of the sorting plant. Among the fungi, the predominant genera were Penicillium and Cladosporium, whereas the predominant genera of gram-negative bacteria were Escherichia, Enterobacter, Klebsiella and Serratia. The present study shows that the workers at sorting source-separated packages (plastics materials, ferric and non-ferric metals) domestic waste plant may be exposed to airborne biological agents, especially fungi and gram-negative bacteria.  相似文献   

4.
There is a growing interest in indoor air quality for a better quality environment both at home and at work because many people spend at least 80% of their time indoors. The aim of our study was to evaluate the indoor concentration of airborne bacteria and fungi in a University auditorium, in an office of public buildings and in an apartment in the presence and in absence of building's occupants, building materials and furnishings. The concentrations of airborne bacteria and fungi were determined using a Surface Air System (SAS). In presence of people and furnishings the average air concentrations of bacteria (University auditorium: 925-1225 CFU m(-3); office: 493 CFU m(-3); apartment: 92-182 CFU m(-3)) were higher than in absence (respectively: 190-315 CFU m(-3); 126 CFU m(-3); 66-80 CFU m(-3)). The average air concentrations fungal were higher in presence of people and furnishings (University auditorium: 1256-1769 CFU m(-3); office: 858 CFU m(-3); apartment: 147-297 CFU m(-3)) than in absence (respectively: 301-431 CFU m(-3); 224 CFU m(-3); 102-132 CFU m(-3)). The obtained data can be considered as a step to identify acceptable levels for bioaerosols in common indoor environments.  相似文献   

5.
The emission of the airborne bacteria and fungi from an indoor wastewater treatment station adopting an integrated oxidation ditch with a vertical circle was investigated. Microbial samples were collected by the six-stage viable Andersen cascade impactor, and the samples were collected in triplicate in each sampling site per season. Culture-based method was applied to determine the concentrations of the airborne bacteria and fungi, while the cloning/sequencing method was used to characterize the genetic structure and community diversity of airborne bacteria. The highest concentrations of airborne bacteria (4155 ± 550 CFU/m3) and fungi (883 ± 150 CFU/m3) were obtained in June (summer). The lowest concentration of bacteria (1458 ± 434 CFU/m3) was determined in January (winter), and the lowest concentration of fungi (169 ± 40 CFU/m3) was found in March (spring), respectively. The particle size distribution analysis showed that most culturable bacteria obtained in all the sampling sites were in the particle size range of 1.1–4.7 µm. Most culturable fungi had particle sizes in the range 1.1–3.3 µm. Microbial population analysis showed that Bacillus sp., Acinetobacter sp., and Lysinibacillus were the main groups obtained in S1. Enterobacter was the dominant group in sampling site S2. Both the concentrations and particle size distribution of the bioaerosols in the enclosed space presented a seasonal and site-related variation. Concentration and richness of microorganisms in bioaerosols in June were higher than in September and January. The particle size distribution varied between the sampling sites, and proportion of large particles was higher in S2 than in S1 because of the settlement of large particles. Pathogenic species, such as Acinetobacter lwoffii, Staphylococcus saprophyticus, and Enterobacter sp., were isolated from the bioaerosols, which could pose serious latent danger to sewage workers’ health.  相似文献   

6.
In this study, we evaluated the levels of airborne biological agents, such as bacteria, fungi, endotoxin, and (1→3)-β-d-glucan in university fish toxicity laboratory every month for one year and assessed the associated environmental factors. A single-stage viable cascade impactor connected with a pump was used for culturable bacteria and fungi. An analysis of airborne endotoxin and (1→3)-β-d-glucan was performed using kinetic Limulus amebocyte lysate assays. Levels of culturable bacteria and fungi were the highest in summer, whereas levels of endotoxin and (1→3)-β-d-glucan were the highest in winter and spring, respectively. Human activity was correlated with culturable bacteria and fungi, and culturable fungi were also associated with culturable bacteria. Although additional studies based on advanced analyzing technology are required, simultaneous sampling with biomarkers of bacteria is required to further elucidate the characteristics of biological agents.  相似文献   

7.
The influence of sample-collection-time on the recovery of culturable airborne microorganisms using a low-flow-rate membrane-filtration unit and a high-flow-rate liquid impinger were investigated. Differences in recoveries were investigated in four different atmospheric environments, one mid-oceanic at an altitude of ~10.0 m, one on a mountain top at an altitude of ~3,000.0 m, one at ~1.0 m altitude in Tallahassee, Florida, and one at ~1.0 m above ground in a subterranean-cave. Regarding use of membrane filtration, a common trend was observed: the shorter the collection period, the higher the recovery of culturable bacteria and fungi. These data also demonstrated that lower culturable counts were common in the more remote mid-oceanic and mountain-top atmospheric environments with bacteria, fungi, and total numbers averaging (by sample time or method categories) <3.0 colony-forming units (CFU) m−3. At the Florida and subterranean sites, the lowest average count noted was 3.5 bacteria CFU m−3, and the highest averaged 140.4 total CFU m−3. When atmospheric temperature allowed use, the high-volume liquid impinger utilized in this study resulted in much higher recoveries, as much as 10× greater in a number of the categories (bacterial, fungal, and total CFU). Together, these data illustrated that (1) the high-volume liquid impinger is clearly superior to membrane filtration for aeromicrobiology studies if start-up costs are not an issue and temperature permits use; (2) although membrane filtration is more cost friendly and has a ‘typically’ wider operational range, its limits include loss of cell viability with increased sample time and issues with effectively extracting nucleic acids for community-based analyses; (3) the ability to recover culturable microorganisms is limited in ‘extreme’ atmospheric environments and thus the use of a ‘limited’ methodology in these environments must be taken into account; and (4) the atmosphere culls, i.e., everything is not everywhere.  相似文献   

8.

In recent years, monitoring of airborne bacteria and fungi concentrations has obtained increasing universal attraction not only for influences on ecological balance but also for evaluating their public health consequences. In this study, we aimed to investigate culturable airborne bacteria and fungi levels in different sites of Abadan, and their association with meteorological parameters and PM2.5 levels. Abadan is one of the most industrialized cities in the southwest of Iran where over the current decade has experienced lots of dust storm episodes. In total, 400 air samples were collected in 6 months (autumn and winter) using a single-stage viable Andersen cascade impactor for sampling airborne bacteria and fungi and portable DustTrak Aerosol Monitor 8520 for measuring PM2.5 concentrations and meteorological parameters. Microbial concentrations showed a significant difference between various sites over the study period with averages of 569.57?±?312.64 and 482.73?±?242.86 CFU/M3 for bacteria and fungi, respectively. The air temperature had a significant effect on the concentration of both airborne bacteria and fungi. A significant positive correlation between relative humidity and fungi but no correlation between relative humidity and bacteria concentrations were observed. The average airborne PM2.5 concentrations of all sites among the study period was 93.24?±?116.72 μg/m3. The atmospheric bacterial and fungal communities were strongly positively correlated with the ambient PM2.5 level. The levels of airborne bacteria and fungi along with PM2.5 in the air of the city were relatively higher than the recommended levels. Therefore, the best course of action is needed to control emission sources. Further studies are also needed to evaluate the clinical analysis of the health effects of exposure to these pollutants.

  相似文献   

9.
Culturable Airborne Bacteria in Outdoor Environments in Beijing,China   总被引:5,自引:0,他引:5  
Fang Z  Ouyang Z  Zheng H  Wang X  Hu L 《Microbial ecology》2007,54(3):487-496
Airborne bacteria are important biological components of bioaerosol and play an important role in ecosystem. Bacteria at a high concentration in the atmosphere can result in biological air pollution and all kinds of diseases. In this study, a systematical survey on the culturable airborne bacteria was carried out for 1 year at three sites in Beijing urban area. Results showed that concentrations of culturable bacteria ranged from 71 colony forming units (CFU)/m3 to 22,100 CFU/m3, and the mean was 2,217 CFU/m3. Bacterial concentrations at the human activity-enriched site (RCEES) and the highly trafficked site (XZM) were virtually the same point. They were significantly higher than those at the greener site (BBG). Significant variation in bacterial concentrations in different seasons was observed at RCEES and XZM with higher concentrations in summer and autumn. In a single day, significantly lower concentrations were detected at 13:00 hours through all sampling sites. In this study, 165 species in 47 genera of culturable bacteria were identified. Micrococcus was one of the most dominant bacterial groups and contributed to approximately 20∼30% of the total bacterial concentration, followed by Staphylococcus, Bacillus, Corynebacterium, and Pseudomonas. The bacterial species with a high concentration percentage included Micrococcus luteus and Micrococcus roseus.  相似文献   

10.
Bacterial air sampling in an animal care laboratory showed that dense aerosols are generated during cage changing and cage cleaning. Reyniers and Andersen sampling showed that the airborne bacteria numbered 50 to 200 colony-forming units (CFU)/ft3 of air. Of the viable particles collected by Andersen samplers, 78.5% were larger than 5.5 μm. A low velocity laminar air flow system composed of high-efficiency particulate air (HEPA) filters and a ceiling distribution system maintained the number of airborne viable particles at low levels, generally less than 2 CFU/ft3. Vertical air flow of 15 ft/min significantly reduced the rate of airborne infection by a strain of Proteus mirabilis. Other factors shown to influence airborne infection included type of cage utilized, the use of bedding, the distance between cages, and the number of animals per cage.  相似文献   

11.
The aim of this study was to estimate the indoor and outdoor concentrations of fungal spores in the Metropolitan Area of Sao Paulo (MASP), collected at different sites in winter/spring and summer seasons. The techniques adopted included cultivation (samples collected with impactors) and microscopic enumeration (samples collected with impingers). The overall results showed total concentrations of fungal spores as high as 36,000 per cubic meter, with a large proportion of non culturable spores (around 91% of the total). Penicillium sp. and Aspergillus sp. were the dominant species both indoors and outdoors, in all seasons tested, occurring in more than 30% of homes at very high concentrations of culturable airborne fungi [colony forming units(CFU) m−3]. There was no significant difference between indoor and outdoor concentrations. The total fungal spore concentration found in winter was 19% higher than that in summer. Heat and humidity were the main factors affecting fungal growth; however, a non-linear response to these factors was found. Thus, temperatures below 16°C and above 25°C caused a reduction in the concentration (CFU m−3) of airborne fungi, which fits with MASP climatalogy. The same pattern was observed for humidity, although not as clearly as with temperature given the usual high relative humidity (above 70%) in the study area. These results are relevant for public health interventions that aim to reduce respiratory morbidity among susceptible populations.  相似文献   

12.
Three samples of silage taken from the surface of a silo and from depths of 20 and 45 cm in the silo were studied for identification of the potential agents causing symptoms of organic dust toxic syndrome. The samples were examined by dilution plating before and after aerosolization in an acoustical dust generator. Aerosol samples were collected by liquid impinger and filter cassettes. The samples were examined for total aerobic bacteria, anaerobic bacteria, gram-negative bacteria, lactobacilli, listeriae, thermophilic actinomycetes, fungi, and endotoxin. Very high levels of total aerobic bacteria and fungi were found in the surface sample (up to 10(9) CFU/g in the bulk sample and up to 10(9) CFU/m3 after aerosolization), whereas the corresponding values from the deepest site were 100 to 50,000 times lower. Aspergillus fumigatus predominated among the fungi, whereas Bacillus and gram-negative organisms (Pseudomonas, Alcaligenes, Citrobacter, and Klebsiella species) prevailed among bacteria. Thermophilic actinomycetes occurred in numbers up to 10(7) CFU/g in the bulk samples, whereas anaerobic bacteria, lactobacilli, and listeriae were only few or absent. The concentration of endotoxin was high in the surface sample (up to 211.4 Endotoxin Units/mg) and about 200-fold lower in the sample from the deepest site. The results show that contact with dust from the surface of silage carries the risk of exposure to high concentrations of microorganisms, of which A. fumigatus and endotoxin-producing bacteria are the most probable disease agents.  相似文献   

13.
Three samples of silage taken from the surface of a silo and from depths of 20 and 45 cm in the silo were studied for identification of the potential agents causing symptoms of organic dust toxic syndrome. The samples were examined by dilution plating before and after aerosolization in an acoustical dust generator. Aerosol samples were collected by liquid impinger and filter cassettes. The samples were examined for total aerobic bacteria, anaerobic bacteria, gram-negative bacteria, lactobacilli, listeriae, thermophilic actinomycetes, fungi, and endotoxin. Very high levels of total aerobic bacteria and fungi were found in the surface sample (up to 10(9) CFU/g in the bulk sample and up to 10(9) CFU/m3 after aerosolization), whereas the corresponding values from the deepest site were 100 to 50,000 times lower. Aspergillus fumigatus predominated among the fungi, whereas Bacillus and gram-negative organisms (Pseudomonas, Alcaligenes, Citrobacter, and Klebsiella species) prevailed among bacteria. Thermophilic actinomycetes occurred in numbers up to 10(7) CFU/g in the bulk samples, whereas anaerobic bacteria, lactobacilli, and listeriae were only few or absent. The concentration of endotoxin was high in the surface sample (up to 211.4 Endotoxin Units/mg) and about 200-fold lower in the sample from the deepest site. The results show that contact with dust from the surface of silage carries the risk of exposure to high concentrations of microorganisms, of which A. fumigatus and endotoxin-producing bacteria are the most probable disease agents.  相似文献   

14.
In August and September 2005, Hurricanes Katrina and Rita caused breeches in the New Orleans, LA, levee system, resulting in catastrophic flooding. The city remained flooded for several weeks, leading to extraordinary mold growth in homes. To characterize the potential risks of mold exposures, we measured airborne molds and markers of molds and bacteria in New Orleans area homes. In October 2005, we collected air samples from 5 mildly water-damaged houses, 15 moderately to heavily water-damaged houses, and 11 outdoor locations. The air filters were analyzed for culturable fungi, spores, (1-->3,1-->6)-beta-D-glucans, and endotoxins. Culturable fungi were significantly higher in the moderately/heavily water-damaged houses (geometric mean=67,000 CFU/m3) than in the mildly water-damaged houses (geometric mean=3,700 CFU/m3) (P=0.02). The predominant molds found were Aspergillus niger, Penicillium spp., Trichoderma, and Paecilomyces. The indoor and outdoor geometric means for endotoxins were 22.3 endotoxin units (EU)/m3 and 10.5 EU/m3, respectively, and for (1-->3,1-->6)-beta-D-glucans were 1.7 microg/m3 and 0.9 microg/m3, respectively. In the moderately/heavily water-damaged houses, the geometric means were 31.3 EU/m3 for endotoxins and 1.8 microg/m3 for (1-->3,1-->6)-beta-D-glucans. Molds, endotoxins, and fungal glucans were detected in the environment after Hurricanes Katrina and Rita in New Orleans at concentrations that have been associated with health effects. The species and concentrations were different from those previously reported for non-water-damaged buildings in the southeastern United States.  相似文献   

15.
AIMS: The dynamics of bioaerosol generation in specific occupational environments where mail is manually unpacked and sorted was investigated. METHODS AND RESULTS: Total number of airborne particles was determined in four different size classes (0.3-0.5, 0.5-1, 1-5 and >5 microm) by laser particle counting. Time dependent formation of bioaerosols was monitored by culturing methods and by specific staining followed by flow cytometry. Besides handling of regular mail, specially prepared letters ('spiked letters') were added to the mailbags to deliberately release powdered materials from letters and to simulate high impact loads. These letters contained various dry powdered biological and nonbiological materials such as milk powder, mushrooms, herbs and cat litter. Regarding the four size classes, particulate aerosol composition before mail handling was determined as 83.2 +/- 1.0, 15.2 +/- 0.7, 1.7 +/- 0.4 and 0.04 +/- 0.02%, respectively, whereas the composition changed during sorting to 66.8 +/- 7.9, 22.3 +/- 3.6, 10.4 +/- 4.0 and 0.57 +/- 0.27%, respectively. Mail processing resulted in an increase in culturable airborne bacteria and fungi. Maximum concentrations of bacteria reached 450 CFU m(-3), whereas 270 CFU of fungi were detected. CONCLUSIONS: Indoor particle concentrations steadily increased during mail handling mostly associated with particles of diameters >1 microm. However, it was not possible to distinguish spiked letters from nonspiked by simple particle counting and CFU determinations. SIGNIFICANCE AND IMPACT OF STUDY: The dynamics of bioaerosol generation have to be addressed when monitoring specific occupational environments (such as mail sorting facilities) regarding the occurrence of biological particles.  相似文献   

16.
Exposure to airborne microorganisms in indoor environments may result in infectious disease or elicit an allergic or irritant response. Air handling system components contaminated by fungi have been implicated in the dispersal of spores into the indoor environment, thereby serving as a route of exposure to occupants. This study was conducted to provide quantitative data on the dispersal of spores from fungal colonies growing on three types of duct material. Galvanized metal, rigid fibrous glass ductboard, and fiberglass duct liner were soiled and contaminated with a known concentration of Penicillium chrysogenum spores. The duct materials were incubated in humidity chambers to provide a matrix of growing, sporulating fungal colonies at a contamination level of 109 colony forming units (CFU) per duct section, consistent for all materials. For each experiment a contaminated duct section was inserted into the air handling system of an experimental room, and the air handling system was operated for three 5-minute cycles with an air flow of 4.2 m3 min–1. The duct air velocity was approximately 2.8 m sec–1. The airborne concentration of culturable P. chrysogenum spores (CFU m–3), total P. chrysogenum spores (spores m–3), and total P. chrysogenum-sized particles (particles m–3) were measured in the room using Andersen single-stage impactor samplers, Burkard slide impactor samplers, and an aerodynamic particle sizer, respectively. The highest airborne concentrations (104 CFU m–3; 105 spores m–3; 104 particles m–3) were measured during the first operating cycle of the air handling system for all duct materials with decreasing airborne concentrations measured during the second and third cycles. There was no significant difference in spore dispersal from the three contaminated duct materials. These data demonstrate the potential exposure for building occupants to high concentrations of spores dispersed from fungal colonies on air handling system duct materials during normal operation of the system.  相似文献   

17.
We examined the possibility that decreased environmental oxygen can elevate the levels of indigenous bacteria in the hemolymph of Cancer magister. Crabs were exposed to air-saturated and hypoxic (50% air-saturation) water for 3 days and levels of culturable bacteria in hemolymph were measured every 24 h as the total number of colony-forming units (CFU) per milliliter of hemolymph. Bacteremia increased after 24 h of exposure to hypoxia and persisted for 72 h, whereas crabs exposed to normoxia had no measurable change in number of culturable bacteria. The predominant persistent bacteria in the hemolymph was isolated and identified by DNA sequence-based methods as Psychrobacter cibarus. Crabs were injected with P. cibarus or with buffered saline as a control after 3 h of hypoxia. Levels of culturable bacteria were significantly higher in hypoxic crabs than in normoxic ones (about 2500 versus 1000 CFU ml(-1) 80 min post-injection, respectively), and circulating levels of oxygen were significantly reduced in infected animals compared to uninfected ones after 48 h in hypoxia and after 72 h in air-saturated water post-injection. These data demonstrate that P. cibarius is present in Dungeness crabs, that environmental hypoxia can dramatically elevate levels of persistent bacteria, and that hypoxia in the presence of hemolymph bacteria may ultimately reduce immune and respiratory ability.  相似文献   

18.
Inhalation of airborne microorganisms and organic dust is an occupational concern among workers in agricultural industries. Airborne microorganisms and particulate matter samples were collected from poultry house, flourmill, textile, and food industry sites by use of liquid impinger and gravimetric samplers. Particulate matter concentrations were recorded at median concentrations of 1.56, 1.92, 4.39, and 0.7 mg/m3 in the occupied poultry house, textile, flourmill, and food indoor working environments, respectively. The highest median particulate matter concentration (27.9 mg/m3) was detected at the flourmill’s stack site. The highest median indoor concentration of culturable airborne bacteria (6.23 × 105 CFU/m3) was found at the occupied poultry-house site and the lowest concentration (4.6 × 103 CFU/m3) was found at the food industry site. The highest median indoor concentration of culturable airborne fungi (3.15 × 104 CFU/m3) was found at the flourmill site whereas the lowest (1.24 × 103 CFU/m3) was found at the textile industry site. Bacillus and Staphylococcus were the predominant Gram-positive bacteria whereas Acinetobacter and Klebsiella were the predominant Gram-negative bacteria. Escherichia coli and Salmonella were only detected in the indoor air at the poultry house site. Aspergillus flavus, Aspergillus niger, Penicillium, and yeast were the predominant fungal types at flourmill, textile, food industry, and poultry house, respectively. Workers were continuously exposed to airborne microorganisms at a median value of 104 CFU/m3 in all the industries studied.  相似文献   

19.
Emerging fungi resistant to triazoles are a concern because of the increased use of medical triazoles and exposure to agricultural triazoles. However, little is known about the levels of triazole susceptibility in outdoor airborne fungi making it difficult to assess the risks of inhalation exposure to airborne, antifungal-resistant fungi. This study examined triazole susceptibilities of the airborne thermotolerant fungi isolated from the ambient air of the Seoul Capital Area of South Korea. We used impactor air sampling with triazole-containing nutrient agar plates as the collection substrates to screen for airborne fungal isolates based on their triazole susceptibilities. This study estimated that 0.17% of all the culturable fungi belong to the pathogenic thermotolerant taxa, among which each isolate of Aspergillus niger and Aspergillus tubingensis showed a minimum inhibitory concentration (MIC) of 2 μg/mL or greater for itraconazole. Their concentration in air was 0.4 CFU/m3. Seven human pathogenic Paecilomyces variotii isolates had MICs of 32 μg/mL or greater and lower than 2 μg/mL for the agricultural fungicide tebuconazole and the medical triazole itraconazole, respectively. Though the concentration was low, our results confirm the presence of airborne fungi with high MICs for itraconazole in ambient air. Inhalation is an important exposure route because people inhale more than 10 m3 of air each day. Vigilance is preferred over monitoring for the emergence of triazole-resistant fungal pathogens in ambient outdoor air.  相似文献   

20.
Thailand border market is where the local Thais, Cambodians, Laotians, and Burmeses exchange their goods and culture at the border checkpoints. It is considered to be the source of aerial disease transmission especially for foreigners because it is always very crowded with people from all walks of life. Unhealthy air quality makes this area high risk of spread of airborne diseases. This study assessed airborne concentrations of bacteria and fungi in a border market to improve exposure estimates and develop efficient control strategies to reduce health risk. The density and distribution of airborne bacteria and fungi were investigated in the Chong Chom border market in Surin Province, Thailand. Eighteen air sampling sites were taken from outdoors and various work environments including indoor footpaths, wooden handicraft shops, electronic shops, the secondhand clothing shops, and fruit market areas. Exposed Petri plate method and liquid impinger sampler were used for sampling at the breathing zone, 1.5 m above the floor level, during weekend and holiday. Meteorological factors such as relative humidity, temperature, and light intensity were collected by portable data logger. The relative humidity was 67–73%, and temperature 29–33°C, and light varied between 18 and 270 Lux m−2. Gram-positive and Gram-negative bacteria were found at a mean value of 104 CFU m−3, and airborne fungi of 103 CFU m−3 were recorded. The highest concentration of culturable airborne microorganisms was found along the indoor footpath (9.62 × 104 CFU m−3 and 750.00 CFU/plate/h for impingement and sedimentation methods, respectively), the fruit market area (7.86 × 104 CFU m−3 and 592.42 CFU/plate/h for impingement and sedimentation methods, respectively), and the secondhand clothing shop (4.59 × 103 CFU m−3 and 335.42 CFU/plate/h for impingement and sedimentation methods, respectively) for Gram-positive bacteria, Gram-negative bacteria, and fungi, respectively. The lowest concentration of Gram-positive bacteria, Gram-negative bacteria, and fungi was found only at the outdoor area at 1.53 × 104 CFU m−3, 0.93 × 104 CFU m−3 and 0.80 × 103 CFU m−3 by means of impingement method and 136.67 CFU/plate/h, 69.25 CFU/plate/h, and 62.00 CFU/plate/h by means of sedimentation methods for Gram-positive bacteria, Gram-negative bacteria, and fungi, respectively. The most frequently present airborne bacteria were identified as Bacillus, Corynebacteria, Diplococcus, Micrococcus, Acinetobacter, Alcaligenes, Enterobacter, and spore former rods. Acremonium, Aspergillus, Cladosporium, Penicillium, and Sporotrichum were the most frequently found aerosol fungi genera. The distribution of airborne microorganisms correlated with relative humidity and light factors based on principal component analysis. In conclusion, the border market is a potential source of aerial disease transmission and a various hazards of bioaerosols for workers, consumers, sellers, and tourists. The bioaerosol concentration exceeded the standard of occupational exposure limit. Many major indicators of allergenic and toxigenic airborne bacteria and fungi, Acinetobacter, Enterobacter, Pseudomonas, Cladosporium, Alternaria, Aspergillus, and Penicillium, were found in the various market environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号