首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Beetles (Coleoptera) are the most diverse and species‐rich insect group, representing an impressive explosive radiation in the evolutionary history of insects, and their evolutionary relationships are often difficult to resolve. The amount of ‘traditional markers’ (e.g. mitochondrial genes and nuclear rDNAs) for beetle phylogenetics is small, and these markers often lack sufficient signals in resolving relationships for such a rapidly radiating lineage. Here, based on the available genome data of beetles and other related insect species, we performed a genome‐wide survey to search nuclear protein‐coding (NPC) genes suitable for research on beetle phylogenetics. As a result, we identified 1470 candidate loci, which provided a valuable data resource to the beetle evolutionary research community for NPC marker development. We randomly chose 180 candidate loci from the database to design primers and successfully developed 95 NPC markers which can be PCR amplified from standard genomic DNA extracts. These new nuclear markers are universally applicable across Coleoptera, with an average amplification success rate of 90%. To test the phylogenetic utility, we used them to investigate the backbone phylogeny of Coleoptera (18 families sampled) and the family Coccinellidae (39 species sampled). Both phylogenies are well resolved (average bootstrap support >95%), showing that our markers can be used to address phylogenetic questions of various evolutionary depth (from species level to family level). In general, the newly developed nuclear markers are much easier to use and more phylogenetically informative than the ‘traditional markers’, and show great potential to expedite resolution of many parts in the Beetle Tree of Life.  相似文献   

2.
Do phylogenies and branch lengths based on mitochondrial DNA (mtDNA) provide a reasonable approximation to those based on multiple nuclear loci? In the present study, we show widespread discordance between phylogenies based on mtDNA (two genes) and nuclear DNA (nucDNA; six loci) in a phylogenetic analysis of the turtle family Emydidae. We also find an unusual type of discordance involving the unexpected homogeneity of mtDNA sequences across species within genera. Of the 36 clades in the combined nucDNA phylogeny, 24 are contradicted by the mtDNA phylogeny, and six are strongly contested by each data set. Two genera (Graptemys, Pseudemys) show remarkably low mtDNA divergence among species, whereas the combined nuclear data show deep divergences and (for Pseudemys) strongly supported clades. These latter results suggest that the mitochondrial data alone are highly misleading about the rate of speciation in these genera and also about the species status of endangered Graptemys and Pseudemys species. In addition, despite a strongly supported phylogeny from the combined nuclear genes, we find extensive discordance between this tree and individual nuclear gene trees. Overall, the results obtained illustrate the potential dangers of making inferences about phylogeny, speciation, divergence times, and conservation from mtDNA data alone (or even from single nuclear genes), and suggest the benefits of using large numbers of unlinked nuclear loci. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 445–461.  相似文献   

3.
Abstract. The expanding data set on insect molecular systematics allows examination of phylogenetic performance and molecular evolution of different types of gene. Studies combining more than one gene in the same analysis allow examination of the relative contribution and performance of each gene partition and can help inform gene choice for resolving deep and/or problematic divergences. We compared results obtained from analyses of twelve insect data sets in which authors combined one or more nuclear ribosomal genes (28S and/or 18S) with one or more protein-coding genes [elongation factor-1α (EF-1α), histone H3, carbamoylphosphate synthetase domain (CPS domain of CAD, or rudimentary), long-wavelength rhodopsin (LW opsin), glucose-6-phosphate dehydrogenase (G6pd), phosphoenolpyruvate carboxykinase (PEPCK), arginine kinase, and white]. Data sets examined spanned eight orders of insects (Odonata, Ephemeroptera, Hemiptera, Coleoptera, Trichoptera, Lepidoptera, Diptera and Hymenoptera), providing a broad range of divergence times and taxonomic levels. We estimated the phylogenetic utility of the individual genes (using parsimony methods) and characterized the nucleotide substitution patterns (using Bayesian methods) to ask which type of data is preferable for phylogenetic analysis in insects. Nuclear ribosomal and protein coding genes differed little in our measures of phylogenetic performance and patterns of nucleotide substitution. We recommend combining nuclear ribosomal gene data with nuclear protein-coding gene data because each data set has distinct advantages. We do not recommend using mitochondrial genes for higher-level studies of insect phylogeny because reviewed studies demonstrate substitution patterns that lead to high levels of homoplasy.  相似文献   

4.
Extreme AT bias in Hymenopteran mitochondrial genes have created difficulties for molecular phylogenetic analyses, especially for older divergences where multiple substitutions can erode signal. Heterogeneity in the evolutionary rates of different codon positions and different genes also appears to have been a major problem in resolving ancient divergences in allodapine bees. Here we examine the phylogeny of relatively recent divergences in the allodapine bee genus Braunsapis. We examined heterogeneity in nucleotide substitution parameters for one nuclear gene and codon positions in two mitochondrial genes, exploring various phylogenetic analyses for recovering relationships among species from Africa, Madagascar, southern Asia, and Australia. We explored maximum parsimony, maximum likelihood, Log determinant and Bayesian analyses. Broad topological features of best fit trees tended to be similar for equivalent data sets (e.g., total, or with 3rd mt positions excluded), regardless of the analytic method used (e.g., maximum likelihood or Bayesian). Analyses that used the total data set without modelling partitions separately gave unlikely results, indicating that the Malagasy species was most closely related to Australian species. However, analyses that excluded 3rd mitochondrial positions, or modelled partitions separately, suggested that the Malagasy species falls within the African clade. The unlikely topologies apparently result from long branch attraction, and this problem is ameliorated where modelling allows more realistic estimates of base composition and evolutionary rates for 3rd mitochondrial positions. However, we found that even when codon positions are modelled separately, estimated evolutionary rates for 3rd mitochondrial positions are likely to underestimate true rates. Long branch attraction and multiple substitutions are likely to be much more difficult to circumvent in analyses that explore older, generic-level, divergences in allodapine bees where overwriting is expected to be much more extreme. Our results indicate an African origin for Braunsapis, followed by a single, very early, dispersal event into Asia and then by a later dispersal event into Australia. The Malagasy species is derived from within the African clade.  相似文献   

5.
The Cracidae is one of the most endangered and distinctive bird families in the Neotropics, yet the higher relationships among taxa remain uncertain. The molecular phylogeny of its 11 genera was inferred using 10,678 analyzable sites (5,412 from seven different mitochondrial segments and 5,266 sites from four nuclear genes). We performed combinability tests to check conflicts in phylogenetic signals of separate genes and genomes. Phylogenetic analysis showed that the unrooted tree of ((curassows, horned guan) (guans, chachalacas)) was favored by most data partitions and that different data partitions provided support for different parts of the tree. In particular, the concatenated mitochondrial DNA (mtDNA) genes resolved shallower nodes, whereas the combined nuclear sequences resolved the basal connections among the major clades of curassows, horned guan, chachalacas, and guans. Therefore, we decided that for the Cracidae all data should be combined for phylogenetic analysis. Maximum parsimony (MP), maximum likelihood (ML), and Bayesian analyses of this large data set produced similar trees. The MP tree indicated that guans are the sister group to (horned guan, (curassows, chachalacas)), whereas the ML and Bayesian analysis recovered a tree where the horned guan is a sister clade to curassows, and these two clades had the chachalacas as a sister group. Parametric bootstrapping showed that alternative trees previously proposed for the cracid genera are significantly less likely than our estimate of their relationships. A likelihood ratio test of the hypothesis of a molecular clock for cracid mtDNA sequences using the optimal ML topology did not reject rate constancy of substitutions through time. We estimated cracids to have originated between 64 and 90 million years ago (MYA), with a mean estimate of 76 MYA. Diversification of the genera occurred approximately 41-3 MYA, corresponding with periods of global climate change and other Earth history events that likely promoted divergences of higher level taxa.  相似文献   

6.
The phylogeny of salmonid fishes has been the focus of intensive study for many years, but some of the most important relationships within this group remain unclear. We used 269 Genbank sequences of mitochondrial DNA (from 16 genes) and nuclear DNA (from nine genes) to infer phylogenies for 30 species of salmonids. We used maximum parsimony and maximum likelihood to analyze each gene separately, the mtDNA data combined, the nuclear data combined, and all of the data together. The phylogeny with the best overall resolution and support from bootstrapping and Bayesian analyses was inferred from the combined nuclear DNA data set, for which the different genes reinforced and complemented one another to a considerable degree. Addition of the mitochondrial DNA degraded the phylogenetic signal, apparently as a result of saturation, hybridization, selection, or some combination of these processes. By the nuclear-DNA phylogeny: (1) (Hucho hucho, Brachymystax lenok) form the sister group to (Salmo, Salvelinus, Oncorhynchus, H. perryi); (2) Salmo is the sister-group to (Oncorhynchus, Salvelinus); (3) Salvelinus is the sister-group to Oncorhynchus; and (4) Oncorhynchus masou forms a monophyletic group with O. mykiss and O. clarki, with these three taxa constituting the sister-group to the five other Oncorhynchus species. Species-level relationships within Oncorhynchus and Salvelinus were well supported by bootstrap levels and Bayesian analyses. These findings have important implications for understanding the evolution of behavior, ecology and life-history in Salmonidae.  相似文献   

7.
Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.  相似文献   

8.
We analyzed the higher level phylogeny of the bee family Halictidae based on the coding regions of three single-copy nuclear genes (long-wavelength [LW] opsin, wingless, and elongation factor 1-alpha [EF-1 alpha]). Our combined data set consisted of 2,234 aligned nucleotide sites (702 base pairs [bp] for LW opsin, 405 bp for wingless, and 1,127 bp for EF-1 alpha) and 779 parsimony-informative sites. We included 58 species of halictid bees from 33 genera, representing all subfamilies and tribes, and rooted the trees using seven outgroups from other bee families: Colletidae, Andrenidae, Melittidae, and Apidae. We analyzed the separate and combined data sets by a variety of methods, including equal weights parsimony, maximum likelihood, and Bayesian methods. Analysis of the combined data set produced a strong phylogenetic signal with high bootstrap and Bremer support and high posterior probability well into the base of the tree. The phylogeny recovered the monophyly of the Halictidae and of all four subfamilies and both tribes, recovered relationships among the subfamilies and tribes congruent with morphology, and provided robust support for the relationships among the numerous genera in the tribe Halictini, sensu Michener (2000). Using our combined nucleotide data set, several recently described halictid fossils from the Oligocene and Eocene, and recently developed Bayesian methods, we estimated the antiquity of major clades within the family. Our results indicate that each of the four subfamilies arose well before the Cretaceous-Tertiary boundary and suggest that the early radiation of halictid bees involved substantial African-South American interchange roughly coincident with the separation of these two continents in the late Cretaceous. This combination of single-copy nuclear genes is capable of recovering Cretaceous-age divergences in bees with high levels of support. We propose that LW opsin, wingless, and EF-1 alpha(F2 copy) may be useful in resolving relationships among bee families and other Cretaceous-age insect lineages.  相似文献   

9.

Premise

Bryophytes form a major component of terrestrial plant biomass, structuring ecological communities in all biomes. Our understanding of the evolutionary history of hornworts, liverworts, and mosses has been significantly reshaped by inferences from molecular data, which have highlighted extensive homoplasy in various traits and repeated bursts of diversification. However, the timing of key events in the phylogeny, patterns, and processes of diversification across bryophytes remain unclear.

Methods

Using the GoFlag probe set, we sequenced 405 exons representing 228 nuclear genes for 531 species from 52 of the 54 orders of bryophytes. We inferred the species phylogeny from gene tree analyses using concatenated and coalescence approaches, assessed gene conflict, and estimated the timing of divergences based on 29 fossil calibrations.

Results

The phylogeny resolves many relationships across the bryophytes, enabling us to resurrect five liverwort orders and recognize three more and propose 10 new orders of mosses. Most orders originated in the Jurassic and diversified in the Cretaceous or later. The phylogenomic data also highlight topological conflict in parts of the tree, suggesting complex processes of diversification that cannot be adequately captured in a single gene-tree topology.

Conclusions

We sampled hundreds of loci across a broad phylogenetic spectrum spanning at least 450 Ma of evolution; these data resolved many of the critical nodes of the diversification of bryophytes. The data also highlight the need to explore the mechanisms underlying the phylogenetic ambiguity at specific nodes. The phylogenomic data provide an expandable framework toward reconstructing a comprehensive phylogeny of this important group of plants.  相似文献   

10.
Neotropical rivers are home to the largest assemblage of freshwater fishes, but little is known about the phylogeny of these fishes at the species level using multi-locus molecular markers. Here, we present a phylogeny for all known species of the genus Satanoperca, a widespread group of Neotropical cichlid fishes, based on analysis of six unlinked genetic loci. To test nominal and proposed species limits for this group, we surveyed mtDNA sequence variation among 320 individuals representing all know species. Most nominal species were supported by this approach but we determined that populations in the Xingu, Tapajós, and Araguaia+Paraná Rivers are likely undescribed species, while S. jurupari and S. mapiritensis did not show clear genetic distinction. To infer a phylogeny of these putative species, we conducted maximum likelihood and Bayesian non-clock and relaxed clock analyses of concatenated data from three genes (one mitochondrial, two nuclear). We also used a multi-species coalescent model to estimate a species tree from six unlinked loci (one mitochondrial, five nuclear). The topologies obtained were congruent with other results, but showed only minimal to moderate support for some nodes, suggesting that more loci will be needed to satisfactorily estimate the distribution of coalescent histories within Satanoperca. We determined that this variation results from topological discordance among separate gene trees, likely due to differential sorting of ancestral polymorphisms.  相似文献   

11.
Subsocial behaviour is known to occur in at least 19 insect orders and 17 families of Coleoptera. Within the leaf beetle family, Chrysomelidae, extended maternal care is reported in only 2 of 15 subfamilies: Cassidinae and Chrysomelinae. Although the emergence of subsociality in insects has received much attention, extensive analyses on the evolution of this behaviour based on phylogenetic approaches are missing. Subsociality is recorded in 33 species of tortoise beetles belonging to the tribes Mesomphaliini and Eugenysini. A molecular phylogenetic reconstruction of these tribes and the remaining five Neotropical tribes of cassidine tortoise beetles was used to investigate the evolution of maternal care and to elucidate the phylogenetic relationships among Neotropical cassidine tribes. A phylogeny was constructed using 90 species and three loci from both mitochondrial and nuclear genes (COI, CAD and 28S). Bayesian inference and maximum likelihood analyses based on a concatenated dataset recovered two independent origins, with no evidence of reversal to solitary behaviour. One origin comprises three Mesomphaliini genera tightly associated with Convolvulaceae, and the other consists of the genus Eugenysa Chevrolat (Eugenysini), a small clade embedded within a group feeding exclusively on Asteraceae. A previous hypothesis suggesting dual origins on different host plants was confirmed, whereas other hypotheses based on a phylogenetic reconstruction of Cassidinae could not be sustained. Our analysis also revealed that the tribe Mesomphaliini is a monophyletic taxon if Eugenysini is included, and for this reason, we re-establish synonymy of both tribes. We also provide nine new records of subsociality for tortoise beetles species.  相似文献   

12.
Compared to the number of genes available for study of both younger and older divergences, few genes have yet been identified that can strongly resolve phylogenetic splits of Mesozoic age ( approximately 65-250 mya). Thus, reconstruction of Mesozoic-age phylogenies, exemplified by basal divergences within the major orders of holometabolous insects, is likely to be especially dependent on combining multiple lines of evidence. This study tests the potential of the 18S ribosomal RNA gene for reconstructing Mesozoic-aged divergences within the insect order Lepidoptera and its ability when combined with a second, previously analyzed nuclear gene (phosphoenolpyruvate carboxykinase, PEPCK) to strongly resolve these relationships. 18S sequences were obtained for 21 taxa, representing major clades of Lepidoptera plus outgroups from the other "panorpoid orders. A well-corroborated morphology-based "test phylogeny was used to evaluate the effects of partitioning the 18S gene according to variable versus conserved domains, paired versus unpaired sites in the secondary structure, and transition versus transversion substitutions. Likelihood and unweighted parsimony analyses of the 18S data recover the "test phylogeny" almost completely, with no improvement of agreement or support provided by any form of weighting or partitioning. No conflict in signal between 18S and PEPCK was detected by the partition homogeneity test. Combined parsimony analysis yielded strong bootstrap support for nearly all relationships, much higher than for either gene alone, thereby also providing strong evidence on several hypotheses about the early evolution of lepidopteran-plant interactions. These genes in combination may be widely useful for resolving insect divergences of comparable age.  相似文献   

13.
Octopus has been regarded as a "catch all" genus, yet its monophyly is questionable and has been untested. We inferred a broad-scale phylogeny of the benthic shallow-water octopuses (subfamily Octopodinae) using amino acid sequences of two mitochondrial DNA genes: Cytochrome oxidase subunit III and Cytochrome b apoenzyme, and the nuclear DNA gene Elongation Factor-1alpha. Sequence data were obtained from 26 Octopus species and from four related genera. Maximum likelihood and Bayesian approaches were implemented to estimate the phylogeny, and non-parametric bootstrapping was used to verify confidence for Bayesian topologies. Phylogenetic relationships between closely related species were generally well resolved, and groups delineated, but the genes did not resolve deep divergences well. The phylogenies indicated strongly that Octopus is not monophyletic, but several monophyletic groups were identified within the genus. It is therefore clear that octopodid systematics requires major revision.  相似文献   

14.
The family Brassicaceae comprises 3710 species in 338 genera, 25 recently delimited tribes, and three major lineages based on phylogenetic results from the chloroplast gene ndhF. To assess the credibility of the lineages and newly delimited tribes, we sequenced an approximately 1.8-kb region of the nuclear phytochrome A (PHYA) gene for taxa previously sampled for the chloroplast gene ndhF. Using parsimony, likelihood, and Bayesian methods, we reconstructed the phylogeny of the gene and used the approximately unbiased (AU) test to compare phylogenetic results from PHYA with findings from ndhF. We also combined ndhF and PHYA data and used a Bayesian mixed model approach to infer phylogeny. PHYA and combined analyses recovered the same three large lineages as those recovered in ndhF trees, increasing confidence in these lineages. The combined tree confirms the monophyly of most of the recently delimited tribes (only Alysseae, Anchonieae, and Descurainieae are not monophyletic), while 13 of the 23 sampled tribes are monophyletic in PHYA trees. In addition to phylogenetic results, we documented the trichome branching morphology of species across the phylogeny and explored the evolution of different trichome morphologies using the AU test. Our results indicate that dendritic, medifixed, and stellate trichomes likely evolved independently several times in the Brassicaceae.  相似文献   

15.
Cytochrome b and Bayesian inference of whale phylogeny   总被引:2,自引:0,他引:2  
In the mid 1990s cytochrome b and other mitochondrial DNA data reinvigorated cetacean phylogenetics by proposing many novel and provocative hypotheses of cetacean relationships. These results sparked a revision and reanalysis of morphological datasets, and the collection of new nuclear DNA data from numerous loci. Some of the most controversial mitochondrial hypotheses have now become benchmark clades, corroborated with nuclear DNA and morphological data; others have been resolved in favor of more traditional views. That major conflicts in cetacean phylogeny are disappearing is encouraging. However, most recent papers aim specifically to resolve higher-level conflicts by adding characters, at the cost of densely sampling taxa to resolve lower-level relationships. No molecular study to date has included more than 33 cetaceans. More detailed molecular phylogenies will provide better tools for evolutionary studies. Until more genes are available for a high number of taxa, can we rely on readily available single gene mitochondrial data? Here, we estimate the phylogeny of 66 cetacean taxa and 24 outgroups based on Cytb sequences. We judge the reliability of our phylogeny based on the recovery of several deep-level benchmark clades. A Bayesian phylogenetic analysis recovered all benchmark clades and for the first time supported Odontoceti monophyly based exclusively on analysis of a single mitochondrial gene. The results recover the monophyly of all but one family level taxa within Cetacea, and most recently proposed super- and subfamilies. In contrast, parsimony never recovered all benchmark clades and was sensitive to a priori weighting decisions. These results provide the most detailed phylogeny of Cetacea to date and highlight the utility of both Bayesian methodology in general, and of Cytb in cetacean phylogenetics. They furthermore suggest that dense taxon sampling, like dense character sampling, can overcome problems in phylogenetic reconstruction.  相似文献   

16.
Angiosperm phylogeny has been investigated extensively using organellar sequences; recent efforts using nuclear genes have also been successful in reconstructing angiosperm phylogenies at family or deeper levels. However, it is not clear whether nuclear genes are also effective in understanding relationships between species in a genus. Here we present a case study of phylogeny at generic and specific levels with nuclear genes, using Brassicaceae taxa as examples. Brassicaceae includes various crops and the model plant Arabidopsis thaliana. A recent study showed that nuclear genes can provide well-resolved relationships between tribes and larger lineages in Brassicaceae, but few species were included in any given genus. We present a phylogeny with multiple species in each of five genera within Brassicaceae for a total of 65 taxa, using three protein-coding nuclear genes, MLH1, SMC2, and MCM5, with up to approximately 10 200 base pairs (in both exons and introns). Maximum likelihood and Bayesian analyses of the separate gene regions and combined data reveal high resolution at various phylogenetic depths. The relationships between genera here were largely congruent with previous results, with further resolution at the species level. Also, we report for the first time the affinity of Cardamine rockii with tribe Camelineae instead of other Cardamine members. In addition, we report sequence divergence at three levels: across angiosperms, among Brassicaceae species, and between Arabidopsis ecotypes. Our results provide a robust species-level phylogeny for a number of Brassicaceae members and support an optimistic perspective on the phylogenetic utility of conserved nuclear data for relatively recent clades.  相似文献   

17.
Oceanic dolphins (Delphinidae) are the product of a rapid radiation that yielded ~36 extant species of small to medium-sized cetaceans that first emerged in the Late Miocene. Although they are a charismatic group of organisms that have become poster children for marine conservation, many phylogenetic relationships within Delphinidae remain elusive due to the slow molecular evolution of the group and the difficulty of resolving short branches from successive cladogenic events. Here I combine existing and newly generated sequences from four mitochondrial (mt) genes and 20 nuclear (nu) genes to reconstruct a well-supported phylogenetic hypothesis for Delphinidae. This study compares maximum-likelihood and Bayesian inference methods of several data sets including mtDNA, combined nuDNA, gene trees of individual nuDNA loci, and concatenated mtDNA+nuDNA. In addition, I contrast these standard phylogenetic analyses with the species tree reconstruction method of Bayesian concordance analysis (BCA). Despite finding discordance between mtDNA and individual nuDNA loci, the concatenated matrix recovers a completely resolved and robustly supported phylogeny that is also broadly congruent with BCA trees. This study strongly supports groupings such as Delphininae, Lissodelphininae, Globicephalinae, Sotalia+Delphininae, Steno+Orcaella+Globicephalinae, and Leucopleurus acutus, Lagenorhynchus albirostris, and Orcinus orca as basal delphinid taxa.  相似文献   

18.
Regulatory genes control the expression of other genes and are key components of developmental processes such as segmentation and embryonic construction of the skull in vertebrates. Here we examine the variability and evolution of three vertebrate regulatory genes, addressing issues of their utility for phylogenetics and comparing the rates of genetic change seen in regulatory loci to the rates seen in other genes in the parrotfishes. The parrotfishes are a diverse group of colorful fishes from coral reefs and seagrasses worldwide and have been placed phylogenetically within the family Labridae. We tested phylogenetic hypotheses among the parrotfishes, with a focus on the genera Chlorurus and Scarus, by analyzing eight gene fragments for 42 parrotfishes and eight outgroup species. We sequenced mitochondrial 12s rRNA (967 bp), 16s rRNA (577 bp), and cytochrome b (477 bp). From the nuclear genome, we sequenced part of the protein-coding genes rag2 (715 bp), tmo4c4 (485 bp), and the developmental regulatory genes otx1 (672 bp), bmp4 (488bp), and dlx2 (522 bp). Bayesian, likelihood, and parsimony analyses of the resulting 4903 bp of DNA sequence produced similar topologies that confirm the monophyly of the scarines and provide a phylogeny at the species level for portions of the genera Scarus and Chlorurus. Four major clades of Scarus were recovered, with three distributed in the Indo-Pacific and one containing Caribbean/Atlantic taxa. Molecular rates suggest a Miocene origin of the parrotfishes (22 mya) and a recent divergence of species within Scarus and Chlorurus, within the past 5 million years. Developmentally important genes made a significant contribution to phylogenetic structure, and rates of genetic evolution were high in bmp4, similar to other coding nuclear genes, but low in otx1 and the dlx2 exons. Synonymous and non-synonymous substitution patterns in developmental regulatory genes support the hypothesis of stabilizing selection during the history of these genes, with several phylogenetic regions of accelerated non-synonymous change detected in the phylogeny.  相似文献   

19.
Phylogenetic studies of ticks have been increasing in recent years, particularly in the use of molecular data. However, all of the studies to date are either limited to the mitochondrial genome or to a few nuclear ribosomal genes. There is a need to explore the use of nuclear protein-encoding genes because these genes direct most aspects of the phenotypic traits in the development of an organism. We report here the test of a nuclear protein-encoding gene, RNA polymerase II, for the phylogenetic study of ticks. Thirty-eight ticks representing 26 species of hard and soft ticks were chosen for the study. The pairwise divergences among sampled species are ranged from 0.3 to 15.2% and most of the substitutions are transitions. In addition, the nucleotide composition is not obviously biased in POL II gene. The trees inferred from the POL II sequences using maximum parsimony (MP), neighbor joining (NJ), and maximum likelihood (ML) by PAUP* and MrBayes are largely concordant with the existing phylogenies. Our study demonstrated that POL II gene sequences contain strong phylogenetic signals in ticks at the generic and higher levels. POL II has proven to be a useful gene for resolving tick phylogeny. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The planthopper family Cixiidae (Hemiptera: Fulgoromorpha) comprises approximately 160 genera and 2000 species divided in three subfamilies: Borystheninae, Bothriocerinae and Cixiinae, the later with 16 tribes. The current paper represents the first attempt to estimate phylogenetic relationships within Cixiidae based on molecular data. We use a total of 3652 bp sequence alignment of four genes: the mitochondrial coding genes Cytochrome c Oxidase subunit 1 (Cox1) and Cytochrome b (Cytb), a portion of the nuclear 18S rDNA and two non-contiguous portions of the nuclear 28S rDNA. The phylogenetic relationships of 72 terminal specimens were reconstructed using both maximum parsimony and Bayesian inference methods. Through the analysis of this empirical dataset, we also provide comparisons among different a priori partitioning strategies and the use of mixture models in a Bayesian framework. Our comparisons suggest that mixture models overcome the benefits obtained by partitioning the data according to codon position and gene identity, as they provide better accuracy in phylogenetic reconstructions. The recovered maximum parsimony and Bayesian inference phylogenies suggest that the family Cixiidae is paraphyletic in respect with Delphacidae. The paraphyly of the subfamily Cixiinae is also recovered by both approaches. In contrast to a morphological phylogeny recently proposed for cixiids, subfamilies Borystheninae and Bothriocerinae form a monophyletic group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号