首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The kinetics of Na+ efflux from Escherichia coli RA 11 membrane vesicles taking place along a favorable Na+ concentration gradient are strongly dependent on the generation of an electrochemical proton gradient. An energy-dependent acceleration of the Na+ efflux rate is observed at all external pHs between 5.5 and 7.5 and is prevented by uncoupling agents. The contributions of the electrical potential (delta psi) and chemical potential (delta pH) of H+ to the mechanism of Na+ efflux acceleration have been studied by determining the effects of (a) selective dissipation of delta psi and delta pH in respiring membrane vesicles with valinomycin or nigericin and (b) imposition of outwardly directed K+ diffusion gradients (imposed delta psi, interior negative) or acetate diffusion gradients (imposed delta pH, interior alkaline). The data indicate that, at pH 6.6 and 7.5, delta pH and delta psi individually and concurrently accelerate the downhill Na+ efflux rate. At pH 5.5, the Na+ efflux rate is enhanced by delta pH only when the imposed delta pH exceeds a threshold delta pH value; moreover, an imposed delta psi which per se does not enhance the Na+ efflux rate does contribute to the acceleration of Na+ efflux when imposed simultaneously with a delta pH higher than the threshold delta pH value. The results strongly suggest that the Na+-H+ antiport mechanism catalyzes the downhill Na+ efflux.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of matrix pH (pHi) on the activity of the mitochondrial Na+/Ca2+ antiport has been studied using the fluorescence of SNARF-1 to monitor pHi and Na(+)-dependent efflux of accumulated Ca2+ to follow antiport activity. Heart mitochondria respiring in a KCl medium maintain a large delta pH (interior alkaline) and show optimal Na+/Ca2+ antiport only when the pH of the medium (pH0) is acid. Addition of nigericin to these mitochondria decreases delta pH and increases the membrane potential (delta psi). Nigericin strongly activates Na+/Ca2+ antiport at values of pH0 near 7.4 but inhibits antiport activity at acid pH0. When pHi is evaluated in these protocols, a sharp optimum in Na+/Ca2+ antiport activity is seen near pHi 7.6 in the presence or absence of nigericin. Activity falls off rapidly at more alkaline values of pHi. The effects of nigericin on Na+/Ca2+ antiport are duplicated by 20 mM acetate and by 3 mM phosphate. In each case the optimum rate of Na+/Ca2+ antiport is obtained at pHi 7.5 to 7.6 and changes in antiport activity do not correlate with changes in components of the driving force of the reaction (i.e., delta psi, delta pH, or the steady-state Na+ gradient). It is concluded that the Na+/Ca2+ antiport of heart mitochondria is very sensitive to matrix [H+] and that changes in pHi may contribute to the regulation of matrix Ca2+ levels.  相似文献   

3.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

4.
In rat erythrocytes, the regulation of Na+/Mg2+ antiport by protein kinases (PKs), protein phosphatases (PPs), intracellular Mg2+, ATP and Cl- was investigated. In untreated erythrocytes, Na+/Mg2+ antiport was slightly inhibited by the PK inhibitor staurosporine, slightly stimulated by the PP inhibitor calyculin A and strongly stimulated by vanadate. PMA stimulated Na+/Mg2+ antiport. This effect was completely inhibited by staurosporine and partially inhibited by the PKC inhibitors Ro-31-8425 and BIM I. Participation of other PKs such as PKA, the MAPK cascade, PTK, CK I, CK II, CAM II-K, PI 3-K, and MLCK was excluded by use of inhibitors. Na+/Mg2+ antiport in rat erythrocytes can thus be stimulated by PKCalpha. In non-Mg2+ -loaded erythrocytes, ATP depletion reduced Mg2+ efflux and PMA stimulation in NaCl medium. A drastic activation of Na+/Mg2+ antiport was induced by Mg2+ loading which was not further stimulated by PMA. Staurosporine, Ro-31-8425, BIM I and calyculin A did not inhibit Na+/Mg2+ antiport of Mg2+ -loaded cells. Obviously, at high [Mg2+]i Na+/Mg2+ antiport is maximally stimulated. PKCalpha or PPs are not involved in stimulation by intracellular Mg2+. ATP depletion of Mg2+ -loaded erythrocytes reduced Mg2+ efflux and the affinity of Mg2+ binding sites of the Na+/Mg2+ antiporter to Mg2+. In non-Mg2+ -loaded erythrocytes Na+/Mg2+ antiport essentially depends on Cl-. Mg2+ -loaded erythrocytes were less sensitive to the activation of Na+/Mg2+ antiport by [Cl-]i.  相似文献   

5.
Mg2+ efflux is accomplished by an amiloride-sensitive Na+/Mg2+ antiport   总被引:1,自引:0,他引:1  
Mg2+ efflux from Mg2+-preloaded chicken erythrocytes is caused by an electroneutral Na+/Mg2+ antiport. It depends specifically on extracellular Na+, according to Michaelis-Menten kinetics (Km = 25 mM), and is reversibly noncompetitively inhibited by amiloride (Ki = 0.59 mM). In contrast to Na+/H+ antiport, Li+, Ca2+ and N-ethylmaleimide do not interfere with Na+/Mg2+ antiport. The Na+/Mg2+ antiport is driven by the intracellular/extracellular Mg2+ gradient.  相似文献   

6.
This study analyzes the differential characteristics of the Na(+)-H+ antiport systems observed in several epithelial and non-epithelial renal cell lines. Confluent monolayers of LLC-PK1A cells have a Na(+)-H+ antiport system located in the apical membrane of the cell. This system, however, is not expressed during cell proliferation or after incubation in the presence of different mitogenic agents. In contrast, confluent monolayers of MDCK4 express minimal Na(+)-H+ antiport activity in the confluent monolayer state but reach maximal antiport activity during cell proliferation or after activation of the cells by different mitogenic agents. Similar results were obtained with the renal fibroblastic cell line BHK. The system present in MDCK4 cells is localized in the basolateral membrane of the epithelial cell. In LLC-PK1A cells, an increase in the extracellular Na+ concentration produces a hyperbolic increase in the activity of the Na(+)-H+ antiporter. In MDCK4 and BHK cells, however, an increase in external Na+ produces a sigmoid activation of the system. Maximal activation of the system occur at a pHo 7.5 in LLC-PK1A cells and pHo 7.0 in MDCK4 cells. The Na(+)-H+ antiporter of LLC-PK1A cells is more sensitive to the inhibitory effect of amiloride (Ki 1.8 x 10(-7) M) than is the antiporter of MDCK4 cells (Ki 7.0 x 10(-6) M). Moreover, 5-(N-methyl-N-isobutyl)amiloride is the most effective inhibitor of Na(+)-H+ exchange in LLC-PK1A cells, but the least effective inhibitor in MDCK4 cells. Conversely, the analog, 5-(N,N-dimethyl)amiloride, is the most effective inhibitor of Na(+)-H+ exchange in MDCK4 cells, but is the least effective inhibitor in LLC-PK1A cells. These results support the hypothesis that Na(+)-H+ exchange observed in LLC-PK1A and other cell lines may represent the activity of different Na(+)-H+ antiporters.  相似文献   

7.
A method is described that permits simultaneous determination of the net charge transfer associated with Ca2+ transport by the ruthenium-red-sensitive carrier and the ionized internal [Ca2+] in heart mitochondria. The data indicate that this carrier catalyses a charge-uncompensated flux of Ca2+. Full charge compensation for Ca2+ influx is provided by the respiration-dependent efflux of H+. The net efflux of Ca2+ induced by Na+ is analysed in terms of two other carriers, a Na+-Ca2+ antiporter and a Na+-H+ antiporter. Evidence is presented that these two carriers are separate and that the Na+-H+ exchange is the more rapid. The fluxes of Ca2+, Na+ and H+ during the Na+-induced efflux of Ca2+ support a series of events in which the Na+-H+ exchange enables unidirectional Ca2+ fluxes via the uniport and antiport systems to be integrated into a cycle.  相似文献   

8.
Na(+)-dependent Mg2+ efflux from Mg2(+)-loaded rat erythrocytes was determined from the increase of extracellular Mg2+ concentration or decrease of intracellular Mg2+ content, as measured by means of atomic absorption spectrophotometry. Mg2+ efflux was specifically combined with the uptake of Na+ at a stoichiometric ratio of 2Na+:1Mg2+, indicating electroneutral Na+/Mg2+ antiport. Na+/Mg2+ antiport depended on intracellular ATP and was inhibited by amiloride and quinidine, but was insensitive to strophanthin. Net Mg2+ efflux was only occurring at increased concentration of intracellular Mg2+ ([Mg2+]i), and stopped when the physiological Mg2+ content was reached. Intracellular Mg2+ acted cooperatively with a Hill coefficient of 2.4, which may indicate gating of Na+/Mg2+ antiport at increased [Mg2+]i. At increased intracellular Na+ concentration, Na+ competed with intracellular Mg2+ for Mg2+ efflux and Na+ could leave the rat erythrocyte via this transport system. Na+/Mg2+ antiport was working asymmetrically with respect to extra- and intracellular Na+ and Mg2+, and did not perform net Mg2+ uptake.  相似文献   

9.
The amiloride-sensitive and nonelectrogenic Na+-H+ exchange system of eucaryotic cells is currently a topic of great interest. The results of membrane transport in the presence of protons are shown to be similar in two cases: when H+ is transferred in one direction or OH- -in the opposite direction. Therefore, in principle Na+-H+ exchange can be performed by two different mechanisms: Na+/H+ antiport or Na+/OH- symport. However, the kinetic properties of these mechanisms turn out to be quite different. The present study analyses the simplest models of antiport and symport and delineates their important differences. For this purpose the Lineweaver-Burk plot presented as Na+ reverse flow entering a cell 1/JNa (or H+ leaving a cell) versus the reverse concentration of Na+ outside 1/[Na+]0 is most useful. If a series of lines with external pH as a parameter have a common point of intersection placed on the ordinate, it indicates the availability of Na+/H+ antiport. In case of Na+/OH- symport a point of intersection is shifted to the left of the ordinate axis. According to data available in the literature, Na+/H+ antiport manifests itself in dog kidney cells and in hamster lung fibroblasts. In the skeletal muscles of chicken and in rat thymus lymphocytes however, a Na+/OH- symport is apparently present.  相似文献   

10.
Kiegle EA  Bisson MA 《Plant physiology》1996,111(4):1191-1197
In salt-tolerant Chara longifolia, enhanced Na+ efflux plays an important role in maintaining low cytoplasmic Na+. When it is cultured in fresh water (FW), C. longifolia has a higher Na+ efflux than the obligate FW Chara corallina, although pH dependence and inhibitor profiles are similar for both species (J. Whittington and M.A. Bisson [1994] J Exp Bot 45: 657-665). When it is cultured in saltwater, C. longifolia has a Na+ efflux of 264 [plus or minus] 14 nmol m-2 s-1 at pH 7, 13 times higher than FW-adapted cultures and 31 times higher than C. corallina. As in FW-adapted plants, efflux is highest at pH 5, but pH dependence is less steep and more linear in cells adapted to saltwater. In plants of both species from FW cultures, Na+ efflux is inhibited by Li+ at pH 5 but not at pH 7 or 9, whereas in the salt-adapted C. longifolia, Li+ inhibits Na+ efflux at pH 7 and 9 but not at pH 5. Amiloride inhibits Na+ efflux in salt-adapted cells but not in FW cells. We conclude that a new type of Na+ efflux system is induced in salt-adapted plants, although both systems have characteristics suggestive of a Na+/H+ antiport. In all cases, a 1:1 Na+/H+ antiport would have sufficient energy to maintain the cytoplasmic Na+ activities measured at pH 5 and 7 but not at pH 9, which suggests that another efflux system must be operating at pH 9.  相似文献   

11.
The effects of imposed proton motive force on the kinetic properties of the alkalophilic Bacillus sp. strain N-6 Na+/H+ antiport system have been studied by looking at the effect of delta psi (membrane potential, interior negative) and/or delta pH (proton gradient, interior alkaline) on Na+ efflux or H+ influx in right-side-out membrane vesicles. Imposed delta psi increased the Na+ efflux rate (V) linearly, and the slope of V versus delta psi was higher at pH 9 than at pH 8. Kinetic experiments indicated that the delta psi caused a pronounced increase in the Vmax for Na+ efflux, whereas the Km values for Na+ were unaffected by the delta psi. As the internal H+ concentration increased, the Na+ efflux reaction was inhibited. This inhibition resulted in an increase in the apparent Km of the Na+ efflux reaction. These results have also been observed in delta pH-driven Na+ efflux experiments. When Na(+)-loaded membrane vesicles were energized by means of a valinomycin-induced inside-negative K+ diffusion potential, the generated acidic-interior pH gradients could be detected by changes in 9-aminoacridine fluorescence. The results of H+ influx experiments showed a good coincidence with those of Na+ efflux. H+ influx was enhanced by an increase of delta psi or internal Na+ concentration and inhibited by high internal H+ concentration. These results are consistent with our previous contentions that the Na+/H+ antiport system of this strain operates electrogenically and plays a central role in pH homeostasis at the alkaline pH range.  相似文献   

12.
Properties of the Na+/H+ exchange system in synaptosomes have been studied primarily by using acridine orange fluorescence to follow H+ efflux. Results obtained from 22Na+ uptake experiments and [3H]ethylpropylamiloride binding experiments are also presented for comparison. The basal properties of the Na+/H+ antiport in synaptosomes are similar to those found in other systems; (i) the stoichiometry of Na+/H+ exchange is 1:1; (ii) Li+ can be successfully substituted for Na+; its affinity for the exchanger (KLi+ = 3 mM) is higher than that of Na+ (KNa+ = 12 mM), but the maximal rate of H+ efflux in the presence of Li+ is about 3 times lower than the maximal rate of H+ efflux in the presence of Na+; and (iii) the Na+/H+ antiport is inhibited by amiloride derivatives with the rank order:ethylisopropylamiloride greater than ethylpropylamiloride greater than amiloride greater than benzamil. The most important finding of this paper is that the external pH dependence of the synaptosomal Na+/H+ antiport is controlled by the value of internal pH and vice versa. For example apparent pHo values for half-maximum activation of the Na+/H+ exchanger are pHo = 7.12 when pHi = 6.4 and pHo = 7.95 when pHi = 7.3. Therefore, a 0.9 pH unit increase in internal pH produces a shift of at least a 0.83 pH unit in the external pH dependence. In addition, changing pHo from 7.75 to 8.50 also shifts the half-maximum pHi value for activation of the Na+/H+ antiport from 6.67 to 7.54.  相似文献   

13.
During net Mg2+ efflux from Mg2+-preloaded chicken erythrocytes, which occurs via Na+/Mg2+ antiport, 28Mg2+ is taken up intracellularly. Km of 28Mg2+ influx amounted to 1 mM. In Na+-free medium Vmax of 28Mg2+ influx was increased and Km was reduced to 0.2 mM. 28Mg2+ influx was noncompetitively inhibited by amiloride as was found for Na+/Mg2+ antiport. The results indicate that, extracellularly, Mg2+ can compete with Na+ for common binding sites of the Na+/Mg2+ antiporter, resulting in 28Mg2+-24Mg2+ exchange. The rate of Mg2+ exchange depends on extracellular Na+ and on the rate of net Mg2+ efflux.  相似文献   

14.
Fertilization of the sea urchin egg initiates or accelerates a number of metabolic activities, which have been causally linked to a rise in cytoplasmic pH due to increased Na+-H+ antiport. Two possible regulatory pathways linking sperm-egg fusion to the activity of the antiporter are activation of protein kinase C (PKC) and Ca2+, calmodulin (CaM)-dependent kinase. This report presents the effects of protein kinase inhibitors on antiporter activation during fertilization and treatment with PKC agonists, dioctanoylglycerol or phorbol diester. Protein kinase inhibitors, K252a and H-7 blocked the action of PKC agonists, without inhibiting cytoplasmic alkalinization during fertilization. In contrast, W-7 blocked fertilization-induced rise in cytoplasmic pH, without altering the actions of PKC agonists. These results suggest that the Na+-H+ antiporter may be regulated by PKC or Ca2+, CaM-dependent kinase activities, but activation of the antiporter during fertilization is Ca2+, CaM-dependent, despite production of diacylglycerols by hydrolysis of phosphatidylinositols.  相似文献   

15.
The effects of ten amiloride analogues on Na+-H+ exchange in rabbit kidney medulla microsomes have been examined. Most of the analogues appeared to inhibit Na+ uptake into the microsomes more effectively than did amiloride either in the presence or absence of a pH gradient. However, the analogues were also capable of stimulating Na+ efflux from the microsomes at concentrations somewhat higher than the concentrations at which they inhibited Na+ influx. The concentrations at which the analogues stimulated Na+ efflux were about 2-4-times higher than the concentrations at which they blocked influx. This suggested that the two processes were related. The analogues that stimulated efflux most effectively (the 5-N-benzyl-amino analogue of amiloride and the 5-N-butyl-N-methylamino analogue) were shown to induce completely reversible effects. These analogues did not stimulate L-[3H]glucose efflux from medulla microsomes which ruled out nonspecific vesicle destruction or reversible detergent effects. These analogues also induced Na+ efflux from microsomes in the presence of high concentrations of added buffer, which ruled out weak-base uncoupling effects. The possibility exists that these analogues are carried into the microsomes via the Na+-H+ exchange protein and that this permits them to both block Na+ influx into the microsomes and stimulate Na+ efflux as well.  相似文献   

16.
Bassilana M  Damiano E  Leblanc G 《Biochemistry》1984,23(22):5288-5294
Modifications of the kinetic properties of the Escherichia coli (RA11) Na(+) - H(+) antiport system by imposed pH gradients (deltapH, interior alkaline) and membrane potential(delta(psi), interior negative) were studied by looking at the accelerating effects of deltapH and delta on downhill Na(+) efflux from membrane vesicles incubated at different external pHs. First,variations of the Na(+) efflux rate ( VNa) as a function of imposed delta pH appear to be strongly dependent on the external pH value.The individual VN, vs. deltapH relationships observed between pH 5.5 and pH 6.6 are all nonlinear and indicate the existence of a threshold deltapH above which V(Na) increases steeply as the deltapH magnitude increases; threshold deltapH values progressively decrease as the pH is raised from 5.5 to 6.6. In contrast, at or above neutrality, V(Na) acceleration is linearly related to deltapH amplitude. Strikingly, it is shown that the deltapH-dependent variations in the Na(+) efflux rate measured in vesicles incubated at different external pHs can be accounted for by variations of internal pH; the observed relationship suggests that a high internal H(+) concentration inhibits the Na(+) -H(+) antiport activity.This inhibition results from a drastic increase in the apparent K(m), of the Na(+) efflux reaction as the internal H(+) concentration increases. On the other hand, imposed Δ increases the Na(+) efflux rate linearly by a selective modification of the V(max) value of the Na(+) efflux. Together, these data indicate that the internal H(+) concentration controls the Na(+)-H(+) antiport activity and that the chemical and electrical proton gradients affect two different kinetic steps of the Na(+)-H(+) exchange reaction.  相似文献   

17.
Ebel H  Günther T 《FEBS letters》2003,543(1-3):103-107
Mg(2+) efflux from rat erythrocytes was measured in NaCl, NaNO(3), NaSCN and Na gluconate medium. Substitution of extracellular and intracellular Cl(-) with the permeant anions NO(3)(-) and SCN(-) reduced Mg(2+) efflux via Na(+)/Mg(2+) antiport. After substitution of extracellular Cl(-) with the non-permeant anion gluconate, Mg(2+) efflux was not significantly reduced. In Na gluconate medium, an influence of the changed membrane potential and intracellular pH on Mg(2+) efflux could be excluded. The results indicate the existence of Cl(-)-independent Na(+)/Mg(2+) antiport and of Na(+)/Mg(2+) antiport stimulated by intracellular Cl(-). Intracellular Cl(-), as determined by means of (36)Cl(-), was found to stimulate Na(+)/Mg(2+) antiport through a cooperative effect according to a sigmoidal kinetics. The Hill coefficient for intracellular Cl(-) amounted to 1.4-1.8, indicating that two intracellular Cl(-) may be simultaneously active. With respect to specificity, Cl(-) was most effective, followed by Br(-), J(-), and F(-). Stimulation of Na(+)/Mg(2+) antiport by intracellular Cl(-) together with intracellular Mg(2+) may play a role during deoxygenation of erythrocytes and in essential hypertension.  相似文献   

18.
The effect of elevating cytoplasmic Ca2+ [( Ca2+]i) on the intracellular pH (pHi) of thymic lymphocytes was investigated. In Na+-containing media, treatment of the cells with ionomycin, a divalent cation ionophore, induced a moderate cytoplasmic alkalinization. In the presence of amiloride or in Na+-free media, an acidification was observed. This acidification is at least partly due to H+ (equivalent) uptake in response to membrane hyperpolarization since: it was enhanced by pretreatment with conductive protonophores, it could be mimicked by valinomycin, and it was decreased by depolarization with K+ or gramicidin. In addition, activation of metabolic H+ production also contributes to the acidification. The alkalinization is due to Na+/H+ exchange inasmuch as it is Na+ dependent, amiloride sensitive, and accompanied by H+ efflux and net Na+ gain. A shift in the pHi dependence underlies the activation of the antiport. The effect of [Ca2+]i on Na+/H+ exchange was not associated with redistribution of protein kinase C and was also observed in cells previously depleted of this enzyme. Treatment with ionomycin induced significant cell shrinking. Prevention of shrinking largely eliminated the activation of the antiport. Moreover, a comparable shrinking produced by hypertonic media also activated the antiport. It is concluded that stimulation of Na+/H+ exchange by elevation of [Ca2+]i is due, at least in part, to cell shrinking and does not require stimulation of protein kinase C.  相似文献   

19.
(Na+ + K+)-ATPase was isolated from the grey matter of brain and incorporated into liposomes. Most of the reconstituted enzyme was oriented 'inside-out' with respect to its in vivo orientation and externally added ATP promoted Na+ uptake that was inhibitable by internally trapped ouabain. Using the same proteoliposomes, an Na+ - Ca2+ exchange system was observed as indicated by the following pieces of evidence. (1) The Na+ gradient provided the only readily apparent driving force for acceleration of Ca2+ accumulation into proteoliposomes. (2) The antiporter was specific for Ca2+, high Mg2+ excess did not inhibit Ca2+ antiport. (3) The Na+ efflux was dependent on the extravesicular Ca2+ concentration. (4) The Na+ efflux was not inhibited by tetrodotoxin. The demonstrated Na+ - Ca2+ exchange could not be related to (Na+ + K+)-ATPase protein, since it was not purified with (Na+ + K+)-ATPase, as followed from transport studies with liposomes containing (Na+ + K+)-ATPase of different specific activity. The results strongly indicate that plasma membranes isolated from the grey matter of brain contain an Na+ - Ca2+ exchange system and that the proteoliposomes are suitable for further purification of the carrier molecule.  相似文献   

20.
Voltage-activated H(+)-selective currents were studied in cultured adult rat alveolar epithelial cells and in human neutrophils using the whole-cell configuration of the patch-clamp technique. The H+ conductance, gH, although highly selective for protons, was modulated by monovalent cations. In Na+ and to a smaller extent in Li+ solutions, H+ currents were depressed substantially and the voltage dependence of activation of the gH shifted to more positive potentials, when compared with the "inert" cation tetramethylammonium (TMA+). The reversal potential of the gH, Vrev, was more positive in Na+ solutions than in inert ion solutions. Amiloride at 100 microM inhibited H+ currents in the presence of all cations studied except Li+ and Na+, in which it increased H+ currents and shifted their voltage-dependence and Vrev to more negative potentials. The more specific Na(+)-H+ exchange inhibitor dimethylamiloride (DMA) at 10 microM similarly reversed most of the suppression of the gH by Na+ and Li+. Neither 500 microM amiloride nor 200 microM DMA added internally via the pipette solution were effective. Distinct inhibition of the gH was observed with 1% [Na+]o, indicating a mechanism with high sensitivity. Finally, the effects of Na+ and their reversal by amiloride were large when the proton gradient was outward (pHo parallel pHi 7 parallel 5.5), smaller when the proton gradient was abolished (pH 7 parallel 7), and absent when the proton gradient was inward (pH 6 parallel 7). We propose that the effects of Na+ and Li+ are due to their transport by the Na(+)-H+ antiporter, which is present in both cell types studied. Electrically silent H+ efflux through the antiporter would increase pHi and possibly decrease local pHo, both of which modulate the gH in a similar manner: reducing the H+ currents at a given potential and shifting their voltage- dependence to more positive potentials. A simple diffusion model suggests that Na(+)-H+ antiport could deplete intracellular protonated buffer to the extent observed. Evidently the Na(+)-H+ antiporter functions in perfused cells, and its operation results in pH changes which can be detected using the gH as a physiological sensor. Thus, the properties of the gH can be exploited to study Na(+)-H+ antiport in single cells under controlled conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号