首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Characterization of tyrosine hydroxylase from Manduca sexta   总被引:1,自引:0,他引:1  
In insects, 3,4-dihydroxyphenylalanine (DOPA) is required for tanning of newly formed cuticle and the production of melanin during some types of immune responses. DOPA is produced by the hydroxylation of tyrosine, and this reaction can be catalyzed by two types of enzymes: tyrosine hydroxylase (TH) and phenoloxidase (PO). TH is required for cuticle tanning in Drosophila melanogaster and for cuticle pigmentation in other insect species, but additional functions of TH have been uncertain. In contrast, an immune function for PO has been well documented. The goal of this study was to characterize TH from Manduca sexta with a focus on its possible contribution to cuticle tanning and immune-associated melanization. We cloned a full-length TH cDNA, purified recombinant TH, and confirmed that MsTH and MsPO have tyrosine hydroxylating activity. To determine possible functions, we analyzed TH expression profiles. TH mRNA and protein were present in eggs at the stage when the pharate larval cuticle begins to tan and also in the integument of molting larvae. The amount of TH in the integument was correlated with the degree of cuticle tanning. Unlike PO, which was found to be constitutively expressed by hemocytes and was present in plasma, TH was upregulated in hemocytes and the fat body in response to an immune challenge and remained intracellular. These data suggest that TH is required for cuticle tanning and immunity in M. sexta. Based on the collective information from many studies, we propose a model in which TH is a major producer of the DOPA required for both cuticle tanning and immune-associated melanization.  相似文献   

2.
Parasitism of fifth instar Manduca sexta larvae by the gregarious parasitoid Cotesia congregata prevented normal storage of tyrosine in the hemolymph, whereas total tyrosine levels increased over eight times in the hemolymph of unparasitized larvae by day 4. Tyrosine glucoside, the hemolymph storage form of tyrosine and the precursor for pupal cuticle sclerotizing agents, was found only in trace amounts in parasitized larvae at the time of parasitoid emergence, but had increased to over 6 mM in hemolymph of unparasitized larvae. Concentrations of dopamine and N-β-alanyldopamine (NBAD), precursors for melanization and sclerotization of cuticle, respectively, had approximately doubled in the hemolymph of parasitized larvae by the day of parasitoid emergence, but not in unparasitized larvae. Catecholamine biosynthesis may be transiently stimulated for wound-healing, as black melanic pigmentation appeared around the wasp emergence holes in the host integument. C. congregata larvae accumulate tyrosine, dopamine, and NBAD by the time of emergence and cocoon spinning, either by direct uptake or by synthesis from precursors obtained from the host. NBAD increased in parasitoid larvae close to pupation, suggesting it functions as the main precursor for pupal cuticle tanning. Both dopamine and NBAD increased dramatically in pharate adult wasps just before eclosion and N-acetyldopamine (NADA) appeared for the first time. Dopamine was highest in concentration and total amount, and it can serve both as a precursor for black melanic pigmentation of adult wasp cuticle and for synthesis of NADA and NBAD, the precursors for cuticle sclerotization. Arch. Insect Biochem. Physiol. 38:193–201, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Specialized mechanical connection between exoskeleton and underlying muscles in arthropods is a complex network of interconnected matrix constituents, junctions and associated cytoskeletal elements, which provides prominent mechanical attachment of the epidermis to the cuticle and transmits muscle tensions to the exoskeleton. This linkage involves anchoring of the complex extracellular matrix composing the cuticle to the apical membrane of tendon cells and linking of tendon cells to muscles basally. The ultrastructural arhitecture of these attachment complexes during molting is an important issue in relation to integument integrity maintenance in the course of cuticle replacement and in relation to movement ability. The aim of this work was to determine the ultrastructural organization of exoskeleton - muscles attachment complexes in the molting terrestrial isopod crustaceans, in the stage when integumental epithelium is covered by both, the newly forming cuticle and the old detached cuticle. We show that the old exoskeleton is extensively mechanically connected to the underlying epithelium in the regions of muscle attachment sites by massive arrays of fibers in adult premolt Ligia italica and in prehatching embryos and premolt marsupial mancas of Porcellio scaber. Fibers expand from the tendon cells, traverse the new cuticle and ecdysal space and protrude into the distal layers of the detached cuticle. They likely serve as final anchoring sites before exuviation and may be involved in animal movements in this stage. Tendon cells in the prehatching embryo and in marsupial mancas display a substantial apicobasally oriented transcellular arrays of microtubules, evidently engaged in myotendinous junctions and in apical anchoring of the cuticular matrix. The structural framework of musculoskeletal linkage is basically established in described intramarsupial developmental stages, suggesting its involvement in animal motility within the marsupium.  相似文献   

4.

Background  

Crustaceans represent an attractive model to study biomineralization and cuticle matrix formation, as these events are precisely timed to occur at certain stages of the moult cycle. Moulting, the process by which crustaceans shed their exoskeleton, involves the partial breakdown of the old exoskeleton and the synthesis of a new cuticle. This cuticle is subdivided into layers, some of which become calcified while others remain uncalcified. The cuticle matrix consists of many different proteins that confer the physical properties, such as pliability, of the exoskeleton.  相似文献   

5.
The cuticle of the nematode Caenorhabditis elegans forms the barrier between the animal and its environment. In addition to being a protective layer, it is an exoskeleton which is important in maintaining and defining the normal shape of the nematode. The cuticle is an extracellular matrix consisting predominantly of small collagen-like proteins that are extensively crosslinked. Although it also contains other protein and non-protein compounds that undoubtedly play a significant part in its function, the specific role of collagen in cuticle structure and morphology is considered here. The C. elegans genome contains between 50 and 150 collagen genes, most of which are believed to encode cuticular collagens. Mutations that result in cuticular defects and grossly altered body form have been identified in more than 40 genes. Six of these genes are now known to encode cuticular collagens, a finding that confirms the importance of this group of structural proteins to the formation of the cuticle and the role of the cuticle as an exoskeleton in shaping the worm. It is likely that many more of the genes identified by mutations giving altered body form, will be collagen genes. Mutations in the cuticular collagen genes provide a powerful tool for investigating the mechanisms by which this group of proteins interact to form the nematode cuticle.  相似文献   

6.
7.
Histoehemical evidence is presented that cells, described as 'tanning cells', in the hydroid Laomedea flexuosa contain an orthodihydroxyphenol oxidase and transfer this enzyme to the perisarc. The detection of copper in the tanning cells provides further evidence for the presence of phenol oxidase, a copper-containing enzyme. Evidence is presented that this enzyme and the orthodihydroxyphenol, dopamine, are stored together in the same 1mu diameter spherical inclusions. The enzyme and orthodihydroxyphenolic substrate appear to be transferred together to the perisarc where it is thought that the dopamine is oxidized by the phenol oxidase to produce a quinone. The quinone is thought to cross-link the structural proteins to form a strong, inert exoskeleton, the perisarc. Attempts to demonstrate peroxidase using benzidine methods are also described. Both the spherical inclusions of the tanning cells and the perisarc of the hydrothecae give a reaction with benzidine in the absence of hydrogen peroxide. This suggests the presence of an oxidizing agent which is not a peroxidase but is possibly a quinone.  相似文献   

8.
Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated; a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine.  相似文献   

9.
Some parasites modify the color of their arthropod hosts, presumably to facilitate transmission to a new host. Mechanisms for such changes often are unknown, but altered exoskeletal color in adult insects typically occurs via structural modifications or redistribution of pigments. Here, we examine the cuticle structure of workers of the Neotropical canopy ant Cephalotes atratus infected with the nematode Myrmeconema neotropicum. We hypothesized that the conspicuous red color of the gaster (the globular posterior body region) of infected ants results from structural changes, specifically localized exoskeletal thinning. We used scanning electron microscopy to quantify the thickness of gaster cuticle in healthy and infected ants. For comparison, we also measured the cuticle thickness of the head of each ant, which is black in both infected and healthy individuals. The gaster cuticle was 23% thinner in infected ants (average ±SE: 14.8 ± 1.02 μm) versus healthy ants (19.2 ± 0.65 μm) after correcting for body size. In contrast, the thickness of the head exoskeleton was similar among groups. We conclude that parasite-induced thinning of the exoskeleton is associated with the red color of the gaster. Other mechanisms, including translocation or leaching of melanin (by the ant or the parasite, respectively) may operate in concert with thinning to effect the color change, and would be an appropriate extension of this research.  相似文献   

10.
Exoskeletal crustacean cuticle is a calcified apical extracellular matrix of epidermal cells, illustrating the chitin-based organic scaffold for biomineralization. Studies of cuticle formation during molting reveal significant dynamics and complexity of the assembly processes, while cuticle formation during embryogenesis is poorly investigated. This study reveals in the terrestrial isopod Porcellio scaber, the ultrastructural organization of the differentiating precuticular matrices and exoskeletal cuticles during embryonic and larval intramarsupial development. The composition of the epidermal matrices was obtained by WGA lectin labelling and EDXS analysis. At least two precuticular matrices, consisting of loosely arranged material with overlying electron dense lamina, are secreted by the epidermis in the mid-stage embryo. The prehatching embryo is the earliest developmental stage with a cuticular matrix consisting of an epicuticle and a procuticle, displaying WGA binding and forming cuticular scales. In newly hatched marsupial larva manca, a new cuticle is formed and calcium sequestration in the cuticle is evident. Progression of larval development leads to the cuticle thickening, structural differentiation of cuticular layers and prominent cuticle calcification. Morphological characteristics of exoskeleton renewal in marsupial manca are described. Elaborated cuticle in marsupial larvae indicates the importance of the exoskeleton in protection and support of the larval body in the marsupium and during the release of larvae in the external environment.  相似文献   

11.
The problem of melaninogenesis and quinone tanning of the cuticle was examined by histochemical and biophysical methods (electroparamagnetic resonance: EPR) on normal subjects of Pycnoscelus surinamensis and on subjects with abnormal cuticular colour. The cuticle of abnormal subjects showed a lower content of polyphenolic substances and a greater positivity for the indole group. This suggests that in these insects tanning products can be synthetized differently and not derived from tyrosine but from tryptophan as postulated by Pryor (1955). Furthermore, a higher number of unsaturated aminic groups is found in abnormal subjects. Granules present only in the cytoplasm of the epidermal cells of the abnormal newly moulted subjects may indicate that the polyphenolic compound of tanning, secreted in an inactive form as 4-0, beta-glucoside, is not freed from the beta-glucosidase and remains as such in the cytoplasm.  相似文献   

12.
Diflubenzuron inhibits the synthesis of chitin (Verloop, in prep.). Some of the resulting possibilities for the investigation of cuticle are explored in this paper. The cuticle of locusts treated with DFB is prone to fracture in characteristic ways. This is of relevance in studying the function of the exoskeleton. Cuticle affected by DFB was examined by polarised light microscopy. Three contrasting regions were used; the prealar arm, the proximal end of the hind tibia and the mandibles. The action of a protease on these regions was studied. The residual chitin content was estimated by analysing hydrolysates of cuticle samples for glucosamine.The results show that chitin is removed to a sufficient extent for the structural coherence and optical properties of the cuticle to be dependent on the proteins. Only in some regions is a stable layer of cuticle formed after treatment with DFB. In these regions, new information about the proteins of cuticle can be obtained. Of particular significance is the observation of a protein helicoid in part of the tibia.  相似文献   

13.
Two mechanisms to account for the stiffening of cuticle at tanning were proposed in 1940. The quinone tanning theory has been almost universally accepted; that of dehydration almost universally neglected. Calculations and tests on the mechanical properties of cuticle under differing conditions suggest that covalent cross-linking, even if it exists, is insufficient to account for the degree of stiffening of cuticle at sclerotisation. Dehydration will induce sufficient secondary bonds to account for the stiffness and insolubility of ‘tanned’ cuticle in the complete absence of covalent cross-links. It is suggested that the mechanism of sclerotisation is driven by quinones and other chemicals which are secreted into the cuticle at sclerotisation and cause highly controlled dehydration. Covalent cross-linking may still occur, but must be considered to be of secondary importance and unproven in all cuticles other than resilin.  相似文献   

14.
Bursicon activity first appears in the haemolymph of the cockroach, Leucophaea maderae, early in ecdysis as the old cuticle splits and separates over the thorax. Hormonal activity reaches high levels in the haemolymph before ecdysis is complete and remains so for about 1·5 hr, with a gradual decline and disappearance by 3 hr. The sensory mechanism controlling bursicon release is located in the thorax and appears to be stimulated as the ecdysial split widens for emergence of the thorax. If the abdomen is isolated before this time no tanning of abdominal cuticle occurs, while the isolated thorax proceeds to tan. Therefore the thoracic ganglia seem to be a site of release for bursicon. Release of the hormone from abdominal and head ganglia may also occur after neural stimulation from the thoracic system. Bursicon activity was found in all ganglia of the central nervous system and the corpora cardiaca-allata complex. Removal of the old cuticle prior to the start of ecdysial behaviour does not result in tanning of the new cuticle. However, if the old cuticle is removed after the insect begins to swallow air in preparation for ecdysis, then the new cuticle tans. Mechanical prevention of ecdysis and later removal of the old cuticle also does not result in tanning of the new cuticle. Therefore, shedding of the old cuticle only activates the release of bursicon in conjunction with other normal ecdysial events.  相似文献   

15.
SYNOPSIS. The end of the molting process in the tobacco hornwormincludes the rapid digestion of the old cuticle, molting fluidresorption, ecdysis of the old cuticle, and expansion and hardeningof the new cuticle. The coordination of these processes is accomplishedby three hormones. Each ecdysis during the life of Manduca appearsto be triggered by eclosion hormone. Depending on developmentalstage, the hormone comes either from the brain-corpora cardiacacomplex or from the chain of ventral ganglia. The neural programstriggered by eclosion hormone include a neuroendocrine event,the release of the tanning hormone, bursicon, thereby ensuringthat tanning of the new cuticle must follow ecdysis. Ecdysis,itself, appears to be controlled by the ecdysteroid levels sinceecdysteroid injections delay ecdysis at physiological concentrationsand in a dose dependent fashion. This delay is due to inhibitionof eclosion hormone secretion and to the retardation of theterminal phases of the molt including the digestion of the oldcuticle and the onset of sensitivity to eclosion hormone. Thus,eclosion hormone secretion and the ecdysis it triggers are coordinatedwith the end of development because both are influenced by thesame endocrine signal—the decline in the ecdysteroid titer.  相似文献   

16.
Paul N. Adler 《Fly》2017,11(3):194-199
The exoskeleton of insects and other arthropods is a very versatile material that is characterized by a complex multilayer structure. In Sobala and Adler (2016) we analyzed the process of wing cuticle deposition by RNAseq and electron microscopy. In this extra view we discuss the unique aspects of the envelope the first and most outermost layer and the gene expression program seen at the end of cuticle deposition. We discussed the role of undulae in the deposition of cuticle and how the hydrophobicity of wing cuticle arises.  相似文献   

17.
Bursicon is an insect neuropeptide hormone that is secreted from the central nervous system into the hemolymph and initiates cuticle tanning. The receptor for bursicon is encoded by the rickets (rk) gene and belongs to the G protein-coupled receptor (GPCR) superfamily. The bursicon and its receptor regulate cuticle tanning as well as wing expansion after adult eclosion. However, the molecular action of bursicon signaling remains unclear. We utilized RNA interference (RNAi) and microarray to study the function of the bursicon receptor (Tcrk) in the model insect, Tribolium castaneum. The data included here showed that in addition to cuticle tanning and wing expansion reported previously, Tcrk is also required for development and expansion of integumentary structures and adult eclosion. Using custom microarrays, we identified 24 genes that are differentially expressed between Tcrk RNAi and control insects. Knockdown in the expression of one of these genes, TC004091, resulted in the arrest of adult eclosion. Identification of genes that are involved in bursicon receptor mediated biological processes will provide tools for future studies on mechanisms of bursicon action.  相似文献   

18.
The tanning process of presumptive solid cuticle was shown to be correlated with both the tensile force at fracture and the tangent modulus. Both of these physical parameters are closely related to the biochemical events associated with the tanning process.  相似文献   

19.
The constitutive criterion for the evolutionary successful clade of ecdysozoans is a protective exoskeleton. In insects the exoskeleton, the so-called cuticle consists of three functional layers, the waterproof envelope, the proteinaceous epicuticle and the chitinous procuticle that are produced as an extracellular matrix by the underlying epidermal cells. Here, we present our electron-microscopic study of cuticle differentiation during embryogenesis in the fruit fly Drosophila melanogaster. We conclude that cuticle differentiation in the Drosophila embryo occurs in three phases. In the first phase, the layers are established. Interestingly, we find that establishment of the layers occurs partially simultaneously rather than in a strict sequential manner as previously proposed. In the second phase the cuticle thickens. Finally, in the third phase, when secretion of cuticle material has ceased, the chitin laminae acquire their typical orientation, and the epicuticle of the denticles and the head skeleton darken. Our work will help to understand the phenotypes of embryos mutant for genes encoding essential cuticle factors, in turn revealing mechanisms of cuticle differentiation.  相似文献   

20.
Molting, or the replacement of the old exoskeleton with a new cuticle, is a complex developmental process that all insects must undergo to allow unhindered growth and development. Prior to each molt, the developing new cuticle must resist the actions of potent chitinolytic enzymes that degrade the overlying old cuticle. We recently disproved the classical dogma that a physical barrier prevents chitinases from accessing the new cuticle and showed that the chitin-binding protein Knickkopf (Knk) protects the new cuticle from degradation. Here we demonstrate that, in Tribolium castaneum, the protein Retroactive (TcRtv) is an essential mediator of this protective effect of Knk. TcRtv localizes within epidermal cells and specifically confers protection to the new cuticle against chitinases by facilitating the trafficking of TcKnk into the procuticle. Down-regulation of TcRtv resulted in entrapment of TcKnk within the epidermal cells and caused molting defects and lethality in all stages of insect growth, consistent with the loss of TcKnk function. Given the ubiquity of Rtv and Knk orthologs in arthropods, we propose that this mechanism of new cuticle protection is conserved throughout the phylum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号