首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
固氮酶由两种铁硫蛋白(钼铁蛋白和铁蛋白)组成。由还原剂提供电子经铁(Fe)蛋白传递给钼铁(MoFe)蛋白,在MoFe蛋白的活性中心部位进行N_2、C_2H_2等多种底物的还原[10,11,20]。MoFe蛋白中的Mo、Fe原子和酸不稳定性硫原子(S~*)组成2个M簇(FeM-oco)、3—4个P簇(P-cluster)及1—2个S(2Fe)簇。在底物还原过程中,这些原子簇都可能参与电子的传递。铁钼辅因子(FeMoco)已被认为是络合和还原底物的重要部位。因此,要阐明MoFe蛋白的作用机理就得研究FeMoco的结构和功  相似文献   

2.
曝氧后,棕色固氮菌(Azotobacter vinelandii)固氮酶钼铁蛋白的催化活性和圆二色信号都显著降低,而吸收光谱则显著增加。与钼、铁、硫化合物和二硫苏糖醇组成的重组溶液保温后,曝氢蛋白的圆二色信号和吸收光谱几乎完全恢复至天然状态的同时,乙炔还原活性也得到了显著的恢复,表明重组溶液可使曝氧蛋白中的 P-cluster和其它活性部位都得到了不同程度的修复。  相似文献   

3.
固氮作用     
本综述总结了固氮酶的一些物理化学性质。考察了该酶的催化特性,包括固氮酶的电子分配和体内固氮酶的能量要求。主要综述了电子向固氮酶转运的生物能学,包括电子载体和产生还原电势的机制。描述了固氮生物中的铁氧还蛋白/黄素氧还蛋白还原系统,包括专性厌氧固氮菌、  相似文献   

4.
固氮酶是由钼铁蛋白和铁蛋白组成的复合物,它们的活性中心分别由钼铁硫原子簇和Fe_4S_4原子簇所组成。MgATP除了与铁蛋白结合外,是否还能与钼铁蛋白结合,长期以来由于存在着相互矛盾的实验结果,而未能定论。  相似文献   

5.
棕色固氮菌(Azotobacter vinelandii)固氮酶钼铁蛋白的紫外CD谱在205—235 nm 出现由峰位分别为208 和222 nm 的双负峰组成的负槽;经邻菲口罗啉在厌氧或有氧环境中处理后,在222 nm 的负峰随该蛋白中P-cluster 和FeMoco 含量的降低而减少。在分别由Na2MoO4、Na2S、二硫苏糖醇和高柠檬酸铁或柠檬酸铁组成的重组液重组后,上述两种处理蛋白在222 nm 的负峰又随其P-cluster和FeMoco含量的恢复而恢复。表明,钼铁蛋白的金属原子簇与蛋白质构象间存在明显的相关性  相似文献   

6.
SmithBE  赵剑峰 《植物学通报》2002,19(6):765-765
固氮酶由钼铁蛋白和铁蛋白组成 ,钼铁蛋白包含FeMoco和P Cluster。为解释固氮机理 ,Kim等 ( 1 992 )、Peters等 ( 1 997)和Mayer等 ( 1 999)分别解析出分辨率为 2 8 、2 .0 和1 .6 的钼铁蛋白晶体结构。Einsle等 ( 2 0 0 2 )又获得了 1 .1 6 的钼铁蛋白结晶 ,在对其进行结构解析后发现 :FeMoco的内部有一个轻的原子与六个铁原子键连接。此轻原子不可能是硫 ,最可能是氮 ,但不排除是碳或氧的可能。已有极好的证据表明FeMoco是固氮酶的底物结合位点和还原中心 ,但底物是如何结合到FeMoc…  相似文献   

7.
固氮酶     
指固氮生物中对固定空气中分子氮并将其转变成氨起特殊催化功能的酶蛋白质。已从16种不同类型固氮生物中分离到固氮酶,它可分为两种独立的酶蛋白:(1)含钼和铁,称钼铁蛋白;(2)含铁,称铁蛋白。一般认为前者是络合和还原氮的中心,后者是电子活化中心。两者单独存在时不能固氮,只有合起来才能重组固氮活性。固氮酶(尤其是铁蛋白)对氧和摄氏零度左右的低温很敏感,易于失活。由于两种蛋白重组固氮活性时的确切比例尚不清楚,加上它们的均一制剂又未得到,所以对整个固氮酶的分子量还无法判断。目  相似文献   

8.
硫氧还蛋白的氧化还原调节作用在生物界中普遍存在。它能够还原目标蛋白的二硫键,而自身的活性位点则被氧化。因此,对于新的催化循环,则需要由相应的还原酶将其再次还原成活性形式。硫氧还蛋白对维持高等植物的光合效率同样具有重要意义。叶绿体中的硫氧还蛋白分别由铁氧还蛋白依赖性硫氧还蛋白还原酶和NADPH依赖性硫氧还蛋白还原酶C(NTRC)两种酶还原。NTRC的本质是一种黄素蛋白,除了具有还原酶活性外,还整合了一个硫氧还蛋白结构域,在叶绿体和淀粉体的氧化还原调节中处于核心地位。这种特殊的双功能酶在卡尔文-本森循环、氧化戊糖磷酸途径、抗过氧化、四吡咯代谢、ATP和淀粉合成、生长素和光周期调控中扮演了多重角色。本综述总结了NTRC的生理功能,并讨论了该蛋白质对植物质体氧化还原稳态的调节机制。  相似文献   

9.
本文研究了在好气条件下,在以谷氨酸为氮源的液体培养基中,固氮螺菌(Azospirllumbrasilense)Yu62固氮酶形成的条件及溶氧压对固氮酶活性的影响。厌氧使整体细胞固氮酶迅速失活;而见氧后固氮酶又重新恢复活性。Western blotting实验证实,这种可逆失活的分子基础,是由于固氮酶铁蛋白-亚基被修饰和去修饰。呼吸抑制剂KCN对固氮酶活性的抑制,亦是由于固氮酶铁蛋白被修饰。因此推论细胞内的能量状态可能是启动固氮酶活化酶系统的重要信号。谷氨酰胺合成酶的抑制剂MSX不能去除厌氧和KCN引起的抑制作用。结果表明:固氮酶活性的NH+4和厌氧关闭可能通过不同的机制起作用。  相似文献   

10.
各种固氮生物的固氮酶对氧都很敏感,无论是制备固氮酶的组份Ⅰ(钼铁蛋白)或组份Ⅱ(铁蛋白),也无论采取什么方法(如DEAE-纤维素层析法、硫酸鱼精朊沉淀法、胶滤、制备凝胶电泳等等)都必需在严格厌氧条件下进行,铁蛋白对氧更加敏感,因此要获得较纯而又具活力的铁蛋白,其分离、纯化过程既要严格厌氧又要迅速。到目前为止,仅红螺菌(Rhodospirillum rubrum)和棕色  相似文献   

11.
Nitrogen fixation: the mechanism of the Mo-dependent nitrogenase   总被引:5,自引:0,他引:5  
This review focuses on recent developments elucidating the mechanism of the Mo-dependent nitrogenase. This enzyme, responsible for the majority of biological nitrogen fixation, is composed of two component proteins called the MoFe protein and the Fe protein. Recent progress in understanding the mechanism of this enzyme has focused on elucidating the structures of the active site metal clusters and of the proteins, understanding substrate interactions with the active site, defining the flow of electron transfer between the metal clusters, and defining the various roles of MgATP hydrolysis.  相似文献   

12.
This review focuses on recent developments elucidating the mechanism of the Mo-dependent nitrogenase. This enzyme, responsible for the majority of biological nitrogen fixation, is composed of two component proteins called the MoFe protein and the Fe protein. Recent progress in understanding the mechanism of this enzyme has focused on elucidating the structures of the active site metal clusters and of the proteins, understanding substrate interactions with the active site, defining the flow of electron transfer between the metal clusters, and defining the various roles of MgATP hydrolysis.  相似文献   

13.
Active Fe protein of nitrogenase was synthesised in a non-nitrogen fixing organism when Escherichia coli was transformed with a plasmid encoding only two nif-specific genes, nifH and nifM of Klebsiella pneumoniae. Hence proteins NifH and NifM are sufficient to produce active Fe protein in E. coli. K. pneumoniae strains carrying chromosomal nifW- and nifZ- mutations were constructed and shown to be significant C2H2-reducing activity and to grow on N-free plates. Nevertheless, derepressing cultures of the mutant strains had reduced levels of MoFe protein activity, and consequently significantly lower levels of nitrogenase activity, than the nif+ parent strain. NifW and NifZ therefore appear to be involved in the formation or accumulation of active MoFe protein, but are not essential for nitrogen fixation in K. pneumoniae under the conditions tested.  相似文献   

14.
Biological nitrogen fixation catalyzed by nitrogenase requires the participation of two component proteins called the Fe protein and the MoFe protein. Each alphabeta catalytic unit of the MoFe protein contains an [8Fe-7S] cluster and a [7Fe-9S-Mo-homocitrate] cluster, respectively designated the P-cluster and FeMo-cofactor. FeMo-cofactor is known to provide the site of substrate reduction whereas the P-cluster has been suggested to function in nitrogenase catalysis by providing an intermediate electron-transfer site. In the present work, evidence is presented for redox changes of the P-cluster during the nitrogenase catalytic cycle from examination of an altered MoFe protein that has the beta-subunit serine-188 residue substituted by cysteine. This residue was targeted for substitution because it provides a reversible redox-dependent ligand to one of the P-cluster Fe atoms. The altered beta-188(Cys) MoFe protein was found to reduce protons, acetylene, and nitrogen at rates approximately 30% of that supported by the wild-type MoFe protein. In the dithionite-reduced state, the beta-188(Cys) MoFe protein exhibited unusual electron paramagnetic resonance (EPR) signals arising from a mixed spin state system (S = 5/2, 1/2) that integrated to 0.6 spin/alphabeta-unit. These EPR signals were assigned to the P-cluster because they were also present in an apo-form of the beta-188(Cys) MoFe protein that does not contain FeMo-cofactor. Mediated voltammetry was used to show that the intensity of the EPR signals was maximal near -475 mV at pH 8.0 and that the P-cluster could be reversibly oxidized or reduced with concomitant loss in intensity of the EPR signals. A midpoint potential (Em) of -390 mV was approximated for the oxidized/resting state couple at pH 8.0, which was observed to be pH dependent. Finally, the EPR signals exhibited by the beta-188(Cys) MoFe protein greatly diminished in intensity under nitrogenase turnover conditions and reappeared to the original intensity when the MoFe protein returned to the resting state.  相似文献   

15.
Nitrogenase is a globally important enzyme that catalyses the reduction of atmospheric dinitrogen into ammonia and is thus an important part of the nitrogen cycle. The nitrogenase enzyme is composed of a catalytic molybdenum-iron protein (MoFe protein) and a protein containing an [Fe4-S4] cluster (Fe protein) that functions as a dedicated ATP-dependent reductase. The current understanding of electron transfer between these two proteins is based on stopped-flow spectrophotometry, which has allowed the rates of complex formation and electron transfer to be accurately determined. Surprisingly, a total of four Fe protein molecules are required to saturate one MoFe protein molecule, despite there being only two well-characterized Fe-protein-binding sites. This has led to the conclusion that the purified Fe protein is only half-active with respect to electron transfer to the MoFe protein. Studies on the electron transfer between both proteins using rapid-quench EPR confirmed that, during pre-steady-state electron transfer, the Fe protein only becomes half-oxidized. However, stopped-flow spectrophotometry on MoFe protein that had only one active site occupied was saturated by approximately three Fe protein equivalents. These results imply that the Fe protein has a second interaction during the initial stages of mixing that is not involved in electron transfer.  相似文献   

16.
By treating the reduced MoFe protein of nitrogenase from Azotobacter vinelandii with O-phenanthroline (O-phen) and O2, inactive MoFe protein which was partialy deficient in both P-cluster and FeMoco could be obtained. After incubating the inactive protein with a reconstituent solution containing KMnO4, ferric homocitrate, Na2S and dithiothreitol, a reconstituted protein could be obtained. The absorption spectrum and C2H2, H+ and N2 reduction activity of the reconstituted protein could be well restored to the state of the reduced MoFe protein. However, the α-helix and CD spectrum at 380—550 nm and at 620—670 nm of the reconstituted protein were somewhat different from those of the reduced MoFe protein. The results showed that: (1) the reconstituted protein was composed of the assembled protein which might be a MnFe protein due to the reconstitution of the metalloclusterdeficient MoFe protein with Mn-containing solution and MoFe protein in which metalloclusters were still intact after the treatment with O-phen and O2; (2) It might be possible that the MnFe protein and MoFe protein were similar in the ability of nitrogen fixation, but were somewhat different in the structure from each other.  相似文献   

17.
A mutant UW3, which is unable to fix N2 in the presence of Mo (Nif-) but undergo phenotypic reversal to Nif+ under Mo deficiency, was able to grow in Mo- and NH3-deficient medium containing Mn, and the growth was accelerated by Mn at low concentration. A partly purified nitrogenase component Ⅰ protein separated from UW3 grown in the Mn-containing medium was shown to contain Fe and Mn atoms (ratio of Fe/Mo/Mn: 10.41/0.19/1.00) with C2H2- and H+-reducing activity which almost equal to half of that of MoFe protein purified from wild-type mutant of Azotobacter vinelandii Lipmann. This protein was obviously different from MoFe protein in both absorption spectrum and circular dichroism, and the molecular weight of subunits in Mn-containing protein was close to that of α subunit in MoFe protein. The preliminary results indicated that the protein containing Mn might be a nitrogenase component Ⅰprotein.  相似文献   

18.
19.
By incubating the reduced MoFe protein from Azotobacter vinelandii with O-phenanthroline under air and chromatographying the incubated solution on Sephadex G-25 column, inactive MoFe protein could be obtained. Its acetylene-reduction activity was remarkably recovered not only by incubation with the reconstituent solution composed of KMnO4, ferric homoeitrate, Na2S and dithiothreitol, but also with a mixture of 4Fe : 4S clusters and another cluster which had two structure units of 1Mo : 3Fe : 4S-bridged by three -OCH3 at the Mo atoms. Neither the reconstituent solution nor the mixture could reactivate apo-MoFe proteins from the mutants deleting nile and nifH genes and from the mutant UW45, which could be reactivated by the FeMoeo extracted from the MoFe protein. The results indicated that the FeMoeo-defieient MoFe proteins from these mutants seemed to be reconstituted only by the clusters which were probably structures only similar to FeMoeo. The partially metalloeluster-deficient MoFe protein could be reconstituted by the clusters with a certain kind of structure and composition; and was changed into different nitrogenase proteins with the ability to fix nitrogen.  相似文献   

20.
Biological nitrogen fixation is catalyzed by nitrogenase, a two-component enzyme consisting of the MoFe protein and the Fe protein. Two genes are involved in the formation of active Fe protein: nifH encodes the structural polypeptide, while nifM specifies a stabilizing and activation function by yet unknown mechanisms. Our studies were directed to clarify whether the NifM exerts its function through physical protein-protein interaction with NifH. To accomplish this, we used the yeast two-hybrid system. The simultaneous expression of the GAL4 binding domain-nifH fusion and GAL4 activation domain-nifM fusion resulted in the successful activation of GAL4-responsive HIS3, ADE2, and lacZ reporter genes in the two-hybrid system used. The system was also used to evidence the potential for in vivo NifH and NifM self-association. The results obtained suggest that NifH and NifM form homomers and also associate in between to form higher order complexes, which may be needed to exert the effect of NifM on Fe protein stability and activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号