首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
木质藤本及其在热带森林中的生态学功能   总被引:5,自引:0,他引:5  
木质藤本是热带森林的一个重要组分,直接或间接地影响着森林中树木的生长和更新,改变森林树木的种类组成,并且可以通过改变森林碳固定量等方式在生态系统水平上发挥作用。全球气候的变化,以及热带森林片断化程度的加剧,将很大程度上影响着木质藤本的多样性和丰富度,其特殊的生物学特性将在森林动态中发挥更加重要的作用。本文结合国内外目前木质藤本研究现状,概述了木质藤本的一般知识(包括木质藤本的定义和生物学特性等),介绍了木质藤本全球分布格局、其多样性维持机理以及木质藤本在森林生态系统中的功能与作用,并就存在的一些问题以及需进一步开展的工作展开了讨论。  相似文献   

2.
木质藤本是热带森林的一个重要组分, 直接或间接地影响着森林中树木的生长和更新, 改变森林树木的种类组成, 并且可以通过改变森林碳固定量等方式在生态系统水平上发挥作用。全球气候的变化, 以及热带森林片断化程度的加剧, 将很大程度上影响着木质藤本的多样性和丰富度, 其特殊的生物学特性将在森林动态中发挥更加重要的作用。本文结合国内外目前木质藤本研究现状, 概述了木质藤本的一般知识(包括木质藤本的定义和生物学特性等), 介绍了木质藤本全球分布格局、其多样性维持机理以及木质藤本在森林生态系统中的功能与作用, 并就存在的一些问题以及需进一步开展的工作展开了讨论。  相似文献   

3.
木质藤本是森林生态系统的重要组分。本研究在元江干热河谷地区随机设置了30个20 m×20 m的样方,调查样方中胸径≥0.5 cm的木质藤本多样性及其与宿主树木之间的关系。结果显示:30个样方中记录到胸径≥0.5 cm的木质藤本植物共945株(隶属于22种20属11科),其中,豆科木质藤本的丰富度和多度最高;胸径≤2 cm的木质藤本占个体总数的63.7%;茎缠绕类木质藤本的个体数最多。样方中胸径≥5 cm的树木共有1060株(隶属于38种31属16科),36.0%的树木上至少附藤1株。不同径级和不同树皮粗糙度的树木被木质藤本侵扰的百分比之间存在极显著差异(P0.001)。随着宿主树木平均枝下高的增加,附藤率呈下降趋势。76.5%的木质藤本选择离其根生长点最近的树木进行攀援。表明元江干热河谷中的木质藤本以小径级占优势,树木胸径、枝下高、树皮粗糙度和木质藤本根生长点到树木的距离是影响木质藤本侵扰树木的重要因素,支持木质藤本对宿主树木的侵扰具有选择性的假说。研究结果对中国西南干热河谷退化植被的恢复与物种多样性保护具有重要意义。  相似文献   

4.
缪宁  刘世荣  史作民  马姜明  王晖 《生态学报》2013,33(13):3889-3897
保留木是指森林生态系统受到强度干扰后所存留的树木,保留木对退化森林生态系统结构与功能的维持和恢复具有多方面的生态效应。在生态系统的尺度上总结了退化森林生态系统中保留木的各种生态效应,主要包括保留木对非生物因子和生物因子(附生生物多样性、动物活动和动物多样性、树木更新、空间结构)的影响。森林生态系统经营中,"绿树保留"的经营方式是基于保留木生态效益的实践应用,它可有效减少采伐对生态系统结构和功能所造成的损失。并将有助于深入理解受到强度干扰后森林生态系统中保留木的多种生态效应,可为退化森林生态系统的恢复与重建提供理论依据。  相似文献   

5.
陈亚军  文斌 《广西植物》2008,28(1):67-72
调查滇南勐宋山地雨林沟谷与坡地两种生境中木质藤本种的丰富度、径级分布、攀缘方式以及样地中被藤本缠绕的树木(dbh≥5cm)的数量和比率。结果表明:沟谷与坡地胸径≥1cm的木质藤本平均密度分别为95.7株/0.1hm2、57株/0.1hm2。调查样地内木质藤本共64种,隶属30个科。茎缠绕是最主要的攀缘方式,占总个体数的57%,卷须缠绕种所占比重最小,仅占3%;沟谷与坡地所调查树木被木质藤本缠绕的比例分别为43.7%和28.6%。与亚洲其它热带地区森林相比,勐宋地区藤本的多样性低,但是木质藤本的密度相当高,并且在一些样地中出现了大型木质藤本,这些可能与该地区森林的演替状态有关。  相似文献   

6.
全球范围内森林片断化现象日益严重。与其他木本植物(乔木和灌木)相比, 木质藤本更趋向于分布在片断化森林的边缘, 因而了解木质藤本对边缘效应的响应对于进一步了解其对森林动态的影响极其必要。本文对哀牢山中山湿性常绿阔叶林林缘到林内环境梯度上木质藤本的变化进行了调查。在形成年龄分别为13年、35年和53年的3种类型的林缘, 设置从林缘向林内连续延伸的长方形样地(20 m × 50 m)各10个(总面积3 ha), 每个样地再划分为5个20 m × 10 m的样方。在每个样方内对胸径≥ 0.2 cm且长度≥ 2.0 m的木质藤本进行了每木调查。在3 ha的林缘样地中共记录到木质藤本植物2,426株, 隶属于14科19属31种。木质藤本的物种丰富度和多度均随距林缘距离的增加而降低, 边缘效应深度在35年林缘的边缘为30 m, 13和53年林缘的边缘则为20 m; 它们的胸高断面积在53年林缘的边缘效应深度为20 m, 但在13和35年林缘的不同距离上差异不显著。木质藤本对边缘效应的响应在物种水平上存在显著差异, 主要呈现正向和中性的响应格局, 包括只分布于林缘的物种, 和从林缘到林内环境梯度上密度逐渐降低的物种; 也有对边缘效应不敏感的物种。典范对应分析(CCA)表明, 林冠开度、边缘形成年龄和土壤水分是决定木质藤本在片断化森林边缘分布的重要影响因子。  相似文献   

7.
木质藤本是生物多样性的重要组成,木质藤本通过影响支持木进而影响群落的结构和功能,但在生物多样性丰富的北热带喀斯特森林中,木质藤本与支持木的关系鲜为人知。以喀斯特季节性雨林的五桠果叶木姜子(Litsea dilleniifolia)群落为研究对象,对木质藤本的密度、分布格局及其与主要树种的关系进行调查研究,分析木质藤本对树木的影响。结果显示:(1)五桠果叶木姜子群落内木质藤本平均密度为0.0913株/m2,木质藤本在0-20m空间尺度整体表现为聚集分布,且随着尺度增大,聚集强度逐渐减弱;不同径级木质藤本在不同尺度上的分布格局不同。(2)木质藤本对不同径级、不同种类、不同聚集强度的支持木选择表现以下体征:随着支持木径级增加,木质藤本攀附的比例和每木藤本数有增加趋势,且木质藤本胸径与支持木胸径呈极显著正相关;附藤率较高的支持木有紫葳科(Bignoniaceae)种类和东京桐(Deutzianthus tonkinensis),单木附藤数量多的是南方紫金牛(Ardisia thyrsiflora);物种的聚集强度与附藤率、附藤数量呈负相关。(3)木质藤本的密度与支持木死亡率关系不显著,而物种的附藤率与死亡率呈极显著负相关。以上结果表明,木质藤本密度在原生性喀斯特季节性雨林中并不高,且木质藤本对支持木具有选择性,但其对五桠果叶木姜子群落的死亡率并未产生显著影响。该研究可为喀斯特原生性季节性雨林的物种共存、极小植物种群保育提供理论依据,也可为石漠化区域的植被修复提供科学参考。  相似文献   

8.
木质藤本植物是热带、亚热带山地森林重要的组分之一, 在森林动态、生态系统过程和森林生物多样性形成与维持等方面具有重要作用。本文调查了哀牢山中山湿性常绿阔叶林木质藤本植物的多样性及其在垂直和水平空间上的分布规律。在20个20 m × 50 m的样地中共调查到DBH≥0.2 cm的木质藤本植物1,145株, 隶属于19科25属29种, 其中物种最丰富的科为菝葜科(4种)和蔷薇科(3种), 但多度最高的科为葡萄科(363株, 占总株数的31.7%)。研究发现林下木质藤本(通常DBH < 1 cm)拥有较高的物种丰富度和多度, 对木质藤本植物多样性具有较大的贡献。有55.7%的个体分布在林下层, 林冠层占28.8%, 亚冠层只有15.5%。木质藤本的垂直空间分布在不同径级、不同攀援类型之间具有明显的差异。 从水平空间分布来看, 地形是影响木质藤本的一个重要因素: 沟谷木质藤本的物种丰富度、多度和基面积分别是坡面的171%, 420%和606%; 有12个物种只分布在沟谷生境。这表明哀牢山中山湿性常绿阔叶林木质藤本植物对生境具有偏好性。  相似文献   

9.
闽北森林群落物种多样性的可塑性面积单元问题   总被引:11,自引:1,他引:10  
朱锦懋  姜志林 《生态学报》1999,19(3):304-311
分析闽北森林群落物种多样性的可塑性面积单元问题(MAUP),结果表明,闽北森林群落物种多样性存在尺度效应和划区效应,其影响随着取样面积增大而减小,长期封禁保护的森林群落和森林群落和近期受人为干扰的退化森林群落物种多样性受MAUP影响趋势相同,文中应用ackknifing方法估计群落物种多样性的近似正态分布置信区间和划区效应。  相似文献   

10.
山西太岳山油松群落对采伐干扰的生态响应   总被引:2,自引:0,他引:2  
森林群落受到采伐干扰后的生态响应程度一直是森林生态学领域关注的研究前沿。本文以太岳山的油松林为对象,选择受不同采伐干扰强度和恢复时间的4块样地,通过固定标准地群落的调查获得数据资料,选用丰富度指数、Simpson指数(λ)、Shannon-Wiener指数(H')、均匀度指数(E1)和Jaccard、Sprenson两种相似性指数,研究油松林对不同采伐方式生态响应,探讨不同采伐干扰强度和恢复时间下油松林生物多样性变化和更新演替规律。研究结果表明:1)受采伐干扰的样地中阳性植物的种类明显增多,随着恢复时间的增长,植物处于生长逐步旺盛、物种逐步丰富的阶段,其种类组成表现出由简单到复杂、由喜阳植物垄断到耐阴种类不断增多、种类由少变多的动态特征。2)适度的择伐可以提高群落整体的多样性,但皆伐则降低了群落的综合物种多样性。3)受相同择伐强度干扰后,群落之间保持了最高的相似性,皆伐干扰使群落环境有了本质的变化,与天然林的物种相似性最低。4)受采伐干扰后形成的次生林内,恢复初期中更新幼苗幼树出现6个树种,主要以油松和辽东栎(Quercus liaodungensi)为主。天然林中的环境最有利于油松幼苗的生长,择伐后恢复初期18a间幼树数量最高,幼苗数量最低,皆伐后更新幼苗幼树数量最少,环境条件最不利于更新。  相似文献   

11.
Closed‐canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species‐conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree‐species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0–100‐m transect from edge to forest interior) on the liana community and liana–host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana‐infested trees, and determinants of the rates of tree infestation within five forest fragments (23–58 ha in area) and five nearby intact‐forest sites. Fragmented forests experienced considerable disturbance‐induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small‐sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low‐disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.  相似文献   

12.
Lianas (woody vines) are increasing in neotropical forests, representing one of the first large-scale structural changes documented for these important ecosystems. The potential ramifications of increasing lianas are huge, as lianas alter both tropical forest diversity and ecosystem functioning. At the community level, lianas affect tree species co-existence and diversity by competing more intensely with some tree species than others, and thus will likely alter tree species composition. At the ecosystem level, lianas affect forest carbon and nutrient storage and fluxes. A decrease in forest carbon storage and sequestration may be the most important ramification of liana increases. Lianas reduce tree growth and increase tree mortality—thus reducing forest-level carbon storage. The increase in lianas, which have much less wood than trees, compensates only partially for the amount of carbon lost in the displaced trees. Because tropical forests contribute approximately one-third of global terrestrial carbon stocks and net primary productivity, the effect of increasing lianas for tropical forest carbon cycles may have serious repercussions at the global scale.Key words: carbon cycle, CO2, disturbance, global change, land use change, liana increases, structural changes, tropical forestsTropical forests contain most of the earth''s plant species and contribute more to carbon storage in the form of above ground biomass than any other terrestrial ecosystem. Temperate and boreal forests are changing rapidly in response to global anthropogenic drivers. Similar large-scale changes are now being detected in tropical forests. One of the largest contemporary changes in tropical forests is an increase in lianas (woody vines),1 which could have serious consequences for tree species diversity and composition, as well as the reducing capacity of tropical forests to store carbon.13  相似文献   

13.
Lianas reduce tree growth, reproduction, and survival in tropical forests. Liana competition can be particularly intense in isolated forest fragments, where liana densities are high, and thus, host tree infestation is common. Furthermore, lianas appear to grow particularly well during seasonal drought, when they may compete particularly intensely with trees. Few studies, however, have experimentally quantified the seasonal effects of liana competition on multiple tree species in tropical forests. We used a liana removal experiment in a forest fragment in southeastern Brazil to test whether the effects of lianas on tree growth vary with season and tree species identity. We conducted monthly diameter measurements using dendrometer bands on 88 individuals of five tree species for 24 months. We found that lianas had a stronger negative effect on some tree species during the wet season compared to the dry season. Furthermore, lianas significantly reduced the diameter growth of two tree species but had no effect on the other three tree species. The strong negative effect of lianas on some trees, particularly during the wet season, indicates that the effect of lianas on trees varies both seasonally and with tree species identity. Abstract in Portuguese is available with online material.  相似文献   

14.
Lianas are an important component of tropical forests; they alter tree mortality and recruitment and impact biogeochemical cycling. Recent evidence suggests that the abundance of lianas in tropical forests is increasing. To understand and predict the effect of lianas on ecosystem processes in tropical forests, it is important to understand the mechanisms through which they compete with trees. In this study, we investigated the functional traits of lianas and trees in a lowland tropical forest in northeast Queensland, Australia. The site is located at 16.1° south latitude and experiences significant seasonality in rainfall, with pronounced wet and dry seasons. It is also subject to relatively frequent disturbance by cyclones. We asked the question of whether the canopy liana community at this site would display functional traits consistent with a competitive advantage over trees in response to disturbance, or in response to dry season water stress. We found that traits that we considered indicative of a dry season advantage (xylem water δ18O as an indicator of rooting depth; leaf and stem tissue δ13C and instantaneous gas exchange as measures of water‐use efficiency) did not differ between canopy lianas and canopy trees. On the other hand, lianas differed from trees in traits that should confer an advantage in response to disturbance (low wood density; low leaf dry matter content; high leaf N concentration; high mass‐based photosynthetic rates). We conclude that the liana community at the study site expressed functional traits geared towards rapid resource acquisition and growth in response to disturbance, rather than outcompeting trees during periods of water stress. These results contribute to a body of literature which will be useful for parameterising a liana functional type in ecosystem models.  相似文献   

15.
Lianas (woody vines) can have profound effects on tree recruitment, growth, survival, and diversity in tropical forests. However, the dynamics of liana colonization soon after land abandonment are poorly understood, and thus it is unknown whether lianas alter tree regeneration early in succession. We examined the liana community in 43 forests that ranged from 1 to 31 yr old in central Panama to determine how fast lianas colonize young forests and how the liana community changes with forest succession. We found that lianas reached high densities early in succession, commonly exceeding 1000 stems/ha within the first 5 yr of forest regeneration. Lianas also increased rapidly during early succession in terms of basal area but did not show evidence of saturation within the 30 yr of our chronosequence. The relative contribution of lianas to total woody plant community in terms of basal area and density increased rapidly and reached a saturation point within 5 yr (basal area) to 15 yr (density) after land abandonment. Our data demonstrate that lianas recruit early and in high density in tropical forest regeneration, and thus lianas may have a large effect on the way in which secondary forests develop both early and throughout succession.  相似文献   

16.
Aim   We seek to determine the factors which control the success of lianas across macroecological gradients. Lianas have a strong impact on the growth, mortality and biomass of tropical trees, and are reported to be increasing in dominance, so understanding their behaviour is important from the perspectives of both ecological and global change.
Location   Lowland and montane Neotropical forests.
Methods   Using 65 standardized samples of lianas (≥ 2.5 cm diameter) from across the Neotropics, we attempted to account for characteristics of both the environment and the forest in explaining macroecological variation in liana success in Neotropical forests, using regression analyses and structural equation modelling.
Results   We found that both liana density and basal area were unrelated to mean annual precipitation, dry season length or soil variables, except for a weak effect of mean annual precipitation on liana basal area. Structural characteristics of the forest explained more of the variation in liana density and basal area than the physical environment. More disturbed forests generally tended to have a higher liana density. Liana basal area, however, was highest in undisturbed forests.
Main conclusions   The availability of host trees and their characteristics may be more important than the direct effects of the physical environment in controlling the success of lianas in Neotropical forests. Changes to the tropical climate in the coming century may not strongly affect lianas directly, but could have very substantial indirect effects via changes in tree community structure and dynamics.  相似文献   

17.
Lianas are a quintessential feature of tropical forests and are often perceived as being poorly studied. However, liana removal studies may be one of the most common experimental manipulations in tropical forest ecology. In this review, we synthesize data from 64 tropical liana removal experiments conducted over the past 90 yr. We explore the direction and magnitude of the effects of lianas on tree establishment, growth, survival, reproduction, biomass accretion, and plant and animal diversity in ecological and forestry studies. We discuss the geographical biases of liana removal studies and compare the various methods used to manipulate lianas. Overall, we found that lianas have a clear negative effect on trees, and trees benefitted from removing lianas in nearly every study across all forest types. Liana cutting significantly increased light and water availability, and trees responded with vastly greater reproduction, growth, survival, and biomass accumulation compared to controls where lianas were present. Removing lianas during logging significantly reduced damage of future merchantable trees and improved timber production. Our review demonstrates that lianas have an unequivocally detrimental effect on every metric of tree performance measured, regardless of forest type, forest age, or geographic location. However, lianas also appear to have a positive contribution to overall forest plant diversity and to different animal groups. Therefore, managing lianas reduces logging damage and improves timber production; however, the removal lianas may also have a negative effect on the faunal community, which could ultimately harm the plant community.  相似文献   

18.
Lianas are a key growth form in tropical forests. Their lack of self-supporting tissues and their vertical position on top of the canopy make them strong competitors of resources. A few pioneer studies have shown that liana optical traits differ on average from those of colocated trees. Those trait discrepancies were hypothesized to be responsible for the competitive advantage of lianas over trees. Yet, in the absence of reliable modelling tools, it is impossible to unravel their impact on the forest energy balance, light competition, and on the liana success in Neotropical forests. To bridge this gap, we performed a meta-analysis of the literature to gather all published liana leaf optical spectra, as well as all canopy spectra measured over different levels of liana infestation. We then used a Bayesian data assimilation framework applied to two radiative transfer models (RTMs) covering the leaf and canopy scales to derive tropical tree and liana trait distributions, which finally informed a full dynamic vegetation model. According to the RTMs inversion, lianas grew thinner, more horizontal leaves with lower pigment concentrations. Those traits made the lianas very efficient at light interception and significantly modified the forest energy balance and its carbon cycle. While forest albedo increased by 14% in the shortwave, light availability was reduced in the understorey (?30% of the PAR radiation) and soil temperature decreased by 0.5°C. Those liana-specific traits were also responsible for a significant reduction of tree (?19%) and ecosystem (?7%) gross primary productivity (GPP) while lianas benefited from them (their GPP increased by +27%). This study provides a novel mechanistic explanation to the increase in liana abundance, new evidence of the impact of lianas on forest functioning, and paves the way for the evaluation of the large-scale impacts of lianas on forest biogeochemical cycles.  相似文献   

19.
Lianas are poorly characterized for central African forests. We quantify variation in liana composition, diversity and community structure in different forest types in the Yangambi Man and Biosphere Reserve, Democratic Republic of Congo. These attributes of liana assemblages were examined in 12 1-ha plots, randomly demarcated within regrowth forest, old growth monodominant forest, old growth mixed forest and old growth edge forest. Using a combination of multivariate and univariate community analyses, we visualize the patterns of these liana assemblage attributes and/or test for their significant differences across forest types. The combined 12 1-ha area contains 2,638 lianas (≥2 cm diameter) representing 105 species, 49 genera and 22 families. Liana species composition differed significantly across forest types. Taxonomic diversity was higher in old growth mixed forests compared to old growth monodominant and regrowth forests. Trait diversity was higher than expected in the regrowth forest as opposed to the rest of forest types. Similarly, the regrowth forest differed from the rest of forest types in the pattern of liana species ecological traits and diameter frequency distribution. The regrowth forest was also less densely populated in lianas and had lower liana total basal area than the rest of forest types. We speculate that the mechanism of liana competitive exclusion by dominant tree species is mainly responsible for the lower liana species diversity in monodominant compared to mixed forests. We attribute variation in liana community structure between regrowth and old growth forests mostly to short development time of size hierarchies.  相似文献   

20.
In tropical forest, landscape fragmentation and the consequent degradation of disturbed forests increase the incidence of light and dry hot winds, causing a disturbance on natural regeneration. Under these conditions, lianas (woody vines) development is stimulated instead of other species, which are more suited to mature forest and under less influence of the edge effect. For this, lianas colonization is an important variable for assessing the disturbance level of a forest. In this context, it becomes important to understand the nature of the competitive relationships between hyper-abundant lianas and ring growth of the host trees. Here, we selected trees with occupation or absence of lianas from two tropical species – Pinus caribaea var. hondurensis (Caribbean pine) and Tectona grandis (teak) – localized in a semideciduous forest fragment in southeastern Brazil, aiming to compare growth, climatic response, anatomy (vessels and intra-annual density fluctuations), wood density and carbon, by tree-ring analysis. The results showed that the lianas caused a change in tree-ring anatomy of host trees in last 10 years, mainly. We observed that trees occupied by lianas had a decrease the radial growth and carbon in the two species, an increase of the vessels size in teak and a decrease of the IADF frequency in Caribbean pine. In teak, the climate-tree relationship indicated that trees with lianas had lower response to rainfall and higher response to temperature in the summer (rainy and hottest period); in Caribbean pine, we observed that trees with lianas had a 2-month delay in the radial growth response to rainfall in the dry season. In the teak group, we observed that host trees had higher wood density values than liana-free tree in the outer rings, and the opposite was showed for pine. These findings show that tree-ring growth of host trees are a strong bioindicator of forest disturbance caused by aggressive colonization of lianas. We believe that these methods are applicable to future studies relating to the effects of habitat fragmentation and forest degradation on biodiversity and ecosystem services, particularly in the context of global climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号