首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 189 毫秒
1.
The interaction of sodium and potassium ions in the context of the primary entry of Na(+) into plant cells, and the subsequent development of sodium toxicity, has been the subject of much recent attention. In the present study, the technique of compartmental analysis with the radiotracers (42)K(+) and (24)Na(+) was applied in intact seedlings of barley (Hordeum vulgare L.) to test the hypothesis that elevated levels of K(+) in the growth medium will reduce both rapid, futile Na(+) cycling at the plasma membrane, and Na(+) build-up in the cytosol of root cells, under saline conditions (100 mM NaCl). We reject this hypothesis, showing that, over a wide (400-fold) range of K(+) supply, K(+) neither reduces the primary fluxes of Na(+) at the root plasma membrane nor suppresses Na(+) accumulation in the cytosol. By contrast, 100 mM NaCl suppressed the cytosolic K(+) pool by 47-73%, and also substantially decreased low-affinity K(+) transport across the plasma membrane. We confirm that the cytosolic [K(+)]:[Na(+)] ratio is a poor predictor of growth performance under saline conditions, while a good correlation is seen between growth and the tissue ratios of the two ions. The data provide insight into the mechanisms that mediate the toxic influx of sodium across the root plasma membrane under salinity stress, demonstrating that, in the glycophyte barley, K(+) and Na(+) are unlikely to share a common low-affinity pathway for entry into the plant cell.  相似文献   

2.
Injury to neural tissue renders voltage-gated Na(+) (Nav) channels leaky. Even mild axonal trauma initiates Na(+) -loading, leading to secondary Ca(2+)-loading and white matter degeneration. The nodal isoform is Nav1.6 and for Nav1.6-expressing HEK-cells, traumatic whole cell stretch causes an immediate tetrodotoxin-sensitive Na(+)-leak. In stretch-damaged oocyte patches, Nav1.6 current undergoes damage-intensity dependent hyperpolarizing- (left-) shifts, but whether left-shift underlies injured-axon Nav-leak is uncertain. Nav1.6 inactivation (availability) is kinetically limited by (coupled to) Nav activation, yielding coupled left-shift (CLS) of the two processes: CLS should move the steady-state Nav1.6 "window conductance" closer to typical firing thresholds. Here we simulated excitability and ion homeostasis in free-running nodes of Ranvier to assess if hallmark injured-axon behaviors-Na(+)-loading, ectopic excitation, propagation block-would occur with Nav-CLS. Intact/traumatized axolemma ratios were varied, and for some simulations Na/K pumps were included, with varied in/outside volumes. We simulated saltatory propagation with one mid-axon node variously traumatized. While dissipating the [Na(+)] gradient and hyperactivating the Na/K pump, Nav-CLS generated neuropathic pain-like ectopic bursts. Depending on CLS magnitude, fraction of Nav channels affected, and pump intensity, tonic or burst firing or nodal inexcitability occurred, with [Na(+)] and [K(+)] fluctuating. Severe CLS-induced inexcitability did not preclude Na(+)-loading; in fact, the steady-state Na(+)-leaks elicited large pump currents. At a mid-axon node, mild CLS perturbed normal anterograde propagation, and severe CLS blocked saltatory propagation. These results suggest that in damaged excitable cells, Nav-CLS could initiate cellular deterioration with attendant hyper- or hypo-excitability. Healthy-cell versions of Nav-CLS, however, could contribute to physiological rhythmic firing.  相似文献   

3.
Na+/H+ 逆向转运蛋白与植物耐盐性关系   总被引:12,自引:0,他引:12  
Na+/H+ 逆向转运蛋白与植物的耐盐性有密切的关系。在高等植物体内,主要存在两种Na+/H+ 逆向转运蛋白,分别为位于细胞质膜上的逆向转运蛋白SOS1,以及存在于液泡膜上的AtNHX1。质膜Na+/H+ 逆向转运蛋白主要负责Na+ 的外排,液泡膜Na+/H+ 逆向转运蛋白主要负责把Na+ 区隔化入液泡。过量表达质膜Na+/H+ 逆向转运蛋白SOS1或液泡膜Na+/H+ 逆向转运蛋白AtNHX1能够明显提高植物的耐盐性。本文对植物中Na+/H+ 逆向转运蛋白及其与植物耐盐性之间的关系研究最新进展作一概述。  相似文献   

4.
Na+ transport in plants   总被引:4,自引:0,他引:4  
Apse MP  Blumwald E 《FEBS letters》2007,581(12):2247-2254
The ability of plants to grow in high NaCl concentrations is associated with the ability of the plants to transport, compartmentalize, extrude, and mobilize Na(+) ions. While the influx and efflux at the roots establish the steady state rate of entry of Na(+) into the plant, the compartmentation of Na(+) into the cell vacuoles and the radial transport of Na(+) to the stele and its loading into the xylem establish the homeostatic control of Na(+) in the cytosol of the root cells. Removal of Na(+) from the transpirational stream, its distribution within the plant and its progressive accumulation in the leaf vacuoles, will determine the ability to deal with the toxic effects of Na(+). The aim of this review is to highlight and discuss the recent progress in understanding of Na(+) transport in plants.  相似文献   

5.
A new split-root system was established through grafting to study cotton response to non-uniform salinity. Each root half was treated with either uniform (100/100?mM) or non-uniform NaCl concentrations (0/200 and 50/150?mM). In contrast to uniform control, non-uniform salinity treatment improved plant growth and water use, with more water absorbed from the non- and low salinity side. Non-uniform treatments decreased Na(+) concentrations in leaves. The [Na(+)] in the '0' side roots of the 0/200 treatment was significantly higher than that in either side of the 0/0 control, but greatly decreased when the '0' side phloem was girdled, suggesting that the increased [Na(+)] in the '0' side roots was possibly due to transportation of foliar Na(+) to roots through phloem. Plants under non-uniform salinity extruded more Na(+) from the root than those under uniform salinity. Root Na(+) efflux in the low salinity side was greatly enhanced by the higher salinity side. NaCl-induced Na(+) efflux and H(+) influx were inhibited by amiloride and sodium orthovanadate, suggesting that root Na(+) extrusion was probably due to active Na(+)/H(+) antiport across the plasma membrane. Improved plant growth under non-uniform salinity was thus attributed to increased water use, reduced leaf Na(+) concentration, transport of excessive foliar Na(+) to the low salinity side, and enhanced Na(+) efflux from the low salinity root.  相似文献   

6.
Alzheimer's disease (AD) is associated with impaired glutamate clearance and depressed Na(+)/K(+) ATPase levels in AD brain that might lead to a cellular ion imbalance. To test this hypothesis, [Na(+)] and [K(+)] were analyzed in postmortem brain samples of 12 normal and 16 AD individuals, and in cerebrospinal fluid (CSF) from AD patients and matched controls. Statistically significant increases in [Na(+)] in frontal (25%) and parietal cortex (20%) and in cerebellar [K(+)] (15%) were observed in AD samples compared to controls. CSF from AD patients and matched controls exhibited no differences, suggesting that tissue ion imbalances reflected changes in the intracellular compartment. Differences in cation concentrations between normal and AD brain samples were modeled by a 2-fold increase in intracellular [Na(+)] and an 8-15% increase in intracellular [K(+)]. Since amyloid beta peptide (Aβ) is an important contributor to AD brain pathology, we assessed how Aβ affects ion homeostasis in primary murine astrocytes, the most abundant cells in brain tissue. We demonstrate that treatment of astrocytes with the Aβ 25-35 peptide increases intracellular levels of Na(+) (~2-3-fold) and K(+) (~1.5-fold), which were associated with reduced levels of Na(+)/K(+) ATPase and the Na(+)-dependent glutamate transporters, GLAST and GLT-1. Similar increases in astrocytic Na(+) and K(+) levels were also caused by Aβ 1-40, but not by Aβ 1-42 treatment. Our study suggests a previously unrecognized impairment in AD brain cell ion homeostasis that might be triggered by Aβ and could significantly affect electrophysiological activity of brain cells, contributing to the pathophysiology of AD.  相似文献   

7.
The transport mechanism of Na ions within the nerve cell was studied by measuring the radioactivity distribution profile of22Na that had been intracellularly injected into the giant axon. Specifically, we tested whether or not the movement of Na ions is coupled with the process of “fast axonal transport.” Results of our measurements indicate that the intracellular transport of Na+ and the fast axonal transport are two independent processes. Very few Na ions are irreversibly sequestered into the axoplasmic vesicles involved in axonal transport. The movement of Na+ inside the axon can be modeled by a one-dimension diffusion. The effective diffusion coefficient of the intracellular Na+ was determined in this study.  相似文献   

8.
In order to understand the salt-tolerance mechanism of alkali grass (Puccinellia tenuiflora) compared with wheat (Triticum aestivum L.), [K(+)] and [Na(+)] in roots and shoots in response to salt treatments were examined with ion element analysis and X-ray microanalysis. Both the rapid K(+) and Na(+) influx in response to different NaCl and KCl treatments, and the accumulation of K(+) and Na(+) as the plants acclimated to long-term stress were studied in culture- solution experiments. A higher K(+) uptake under normal and saline conditions was evident in alkali grass compared with that in wheat, and electrophysiological analyses indicated that the different uptake probably resulted from the higher K(+)/Na(+) selectivity of the plasma membrane. When external [K(+)] was high, K(+) uptake and transport from roots to shoots were inhibited by exogenous Cs(+), while TEA (tetraethylammonium) only inhibited K(+) transport from the root to the shoot. K(+) uptake was not influenced by Cs(+) when plants were K(+) starved. It was shown by X-ray microanalysis that high [K(+)] and low [Na(+)] existed in the endodermal cells of alkali grass roots, suggesting this to be the tissue where Cs(+) inhibition occurs. These results suggest that the K(+)/Na(+) selectivity of potassium channels and the existence of an apoplastic barrier, the Casparian bands of the endodermis, lead to the lateral gradient of K(+) and Na(+) across root tissue, resulting not only in high levels of [K(+)] in the shoot but also a large [Na(+)] gradient between the root and the shoot.  相似文献   

9.
The functional expression of membrane transport proteins that are responsible for exchanging sodium and protons is a ubiquitous phenomenon. Among vertebrates the Na+/H+ antiporter occurs in plasma membranes of polarized epithelial cells and non-polarized cells such as red blood cells, muscle cells, and neurons, and in each cell type the transporter exchanges one sodium for one hydrogen ion, is inhibited by amiloride, and regulates intracellular pH and sodium concentration within tight limitations. In polarized epithelial cells this transporter occurs in two isoforms, each of which is restricted to either the brush border or basolateral cell membrane, and perform somewhat different tasks in the two locations. In prokaryotic cells, sodium/proton exchange occurs by an electrogenic 1Na+/2H+ antiporter that is coupled to a primary active proton pump and together these two proteins are capable of tightly regulating the intracellular concentrations of these cations in cells that may occur in environments of 4 M NaCl or pH 10-12. Invertebrate epithelial cells from the gills, gut, and kidney also exhibit electrogenic sodium/proton exchange, but in this instance the transport stoichiometry is 2Na+/1H+. As with vertebrate electroneutral Na+/H+ exchange, the invertebrate transporter is inhibited by amiloride, but because of the occurrence of two external monovalent cation binding sites, divalent cations are able to replace external sodium and also be transported by this system. As a result, both calcium and divalent heavy metals, such as zinc and cadmium, are transported across epithelial brush border membranes in these animals and subsequently undergo a variety of biological activities once accumulated within these cells. Absorbed epithelial calcium in the crustacean hepatopancreas may participate in organismic calcium balance during the molt cycle and accumulated heavy metals may undergo complexation reactions with intracellular anions as a detoxification mechanism. Therefore, while the basic process of sodium/proton exchange may occur in invertebrate cells, the presence of the electrogenic 2Na+/1H+ antiporter in these cells allows them to perform a wide array of functions without the need to develop and express additional specialized transport proteins. J. Exp. Zool. 289:232-244, 2001.  相似文献   

10.
高等植物Na+吸收、转运及细胞内Na+稳态平衡研究进展   总被引:12,自引:1,他引:11  
盐胁迫是影响农业生产的重要环境因素之一。本文对植物Na 吸收的机制和途径、Na 在植物体内的长距离转运以及细胞内Na 稳态平衡的研究进展进行了概述。参与植物Na 吸收与转运的蛋白和通道可能包括HKT、LCT1、AKT和NSCC等。其中,HKT是植物体内普遍存在的一类转运蛋白,能够介导Na 的吸收,其结构中的带电氨基酸残基对于其离子选择性有着非常明显的影响。LCT1是从小麦中发现的一类能够介导低亲和性阳离子吸收的蛋白,然而在典型的土壤Ca2 浓度下LCT1并不能发挥吸收Na 的功能。AKT家族的成员在高盐环境下可能也参与了Na 的吸收。目前虽然还没有克隆到编码NSCC蛋白的基因,但是NSCC作为植物吸收Na 的主要途径的观点已被广泛接受。SOS1和HKT参与了Na 在根部与植株地上部的长距离转运过程,它们在木质部和韧皮部的Na 装载和卸载中发挥重要作用,从而影响植物的抗盐性。另外,由质膜Na /H 逆向转运蛋白SOS1、蛋白激酶SOS2以及Ca2 结合蛋白SOS3组成的SOS复合体对细胞的Na 稳态具有重要的调节作用,单子叶和双子叶植物之间的这种调节机制在结构和功能上具有保守性。SOS复合体与其它位于质膜或液泡膜上的Na /H 逆向转运蛋白以及H 泵一起调节着细胞的Na 稳态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号