首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 259 毫秒
1.
In this paper, we add seasonality to the birth rate of an SIR model with density dependence in the death rate. We find that disease persistence can be explained by considering the average value of the seasonal term. If the basic reproductive ratio R(0)>1 with this average value then the disease will persist and if R(0)<1 with this average value then the disease will die out. However, if the underlying non-seasonal model displays oscillations towards the equilibrium then the dynamics of the seasonal model can become more complex. In this case, the seasonality can interact with the underlying oscillations, resonate and the population can display a range of complex behaviours including chaos. We discuss these results in terms of two examples, Cowpox in bank voles and Rabbit Haemorrhagic disease in rabbits.  相似文献   

2.
A better understanding of disease progression is beneficial for early diagnosis and appropriate individual therapy. Many different approaches for statistical modelling of cumulative disease progression have been proposed in the literature, including simple path models up to complex restricted Bayesian networks. Important fields of application are diseases such as cancer and HIV. Tumour progression is measured by means of chromosome aberrations, whereas people infected with HIV develop drug resistances because of genetic changes of the HI‐virus. These two very different diseases have typical courses of disease progression, which can be modelled partly by consecutive and partly by independent steps. This paper gives an overview of the different progression models and points out their advantages and drawbacks. Different models are compared via simulations to analyse how they work if some of their assumptions are violated. In a simulation study, we evaluate how models perform in terms of fitting induced multivariate probability distributions and topological relationships. We often find that the true model class used for generating data is outperformed by either a less or a more complex model class. The more flexible conjunctive Bayesian networks can be used to fit oncogenetic trees, whereas mixtures of oncogenetic trees with three tree components can be well fitted by mixture models with only two tree components.  相似文献   

3.
Global stability of population models   总被引:2,自引:0,他引:2  
Local stability seems to imply global stability for population models. To investigate this claim, we formally define apopulation model. This definition seems to include the one-dimensional discrete models now in use. We derive a necessary and sufficient condition for the global stability of our defined class of models. We derive an easily testable sufficient condition for local stability to imply global stability. We also show that if a discrete model is majorized by one of these stable population models, then the discrete model is globally stable. We demonstrate the utility of these theorems by using them to prove that the regions of local and global stability coincide for six models from the literature. We close by arguing that these theorems give a method for demonstrating global stability that is simpler and easier to apply than the usual method of Liapunov functions.  相似文献   

4.
Zhou X  Joseph L  Wolfson DB  Bélisle P 《Biometrics》2003,59(4):1082-1088
Summary . Suppose that the true model underlying a set of data is one of a finite set of candidate models, and that parameter estimation for this model is of primary interest. With this goal, optimal design must depend on a loss function across all possible models. A common method that accounts for model uncertainty is to average the loss over all models; this is the basis of what is known as Läuter's criterion. We generalize Läuter's criterion and show that it can be placed in a Bayesian decision theoretic framework, by extending the definition of Bayesian A‐optimality. We use this generalized A‐optimality to find optimal design points in an environmental safety setting. In estimating the smallest detectable trace limit in a water contamination problem, we obtain optimal designs that are quite different from those suggested by standard A‐optimality.  相似文献   

5.
The dynamics of deterministic and stochastic discrete-time epidemic models are analyzed and compared. The discrete-time stochastic models are Markov chains, approximations to the continuous-time models. Models of SIS and SIR type with constant population size and general force of infection are analyzed, then a more general SIS model with variable population size is analyzed. In the deterministic models, the value of the basic reproductive number R0 determines persistence or extinction of the disease. If R0 < 1, the disease is eliminated, whereas if R0 > 1, the disease persists in the population. Since all stochastic models considered in this paper have finite state spaces with at least one absorbing state, ultimate disease extinction is certain regardless of the value of R0. However, in some cases, the time until disease extinction may be very long. In these cases, if the probability distribution is conditioned on non-extinction, then when R0 > 1, there exists a quasi-stationary probability distribution whose mean agrees with deterministic endemic equilibrium. The expected duration of the epidemic is investigated numerically.  相似文献   

6.
SEIR epidemiological models with the inclusion of quarantine and isolation are used to study the control and intervention of infectious diseases. A simple ordinary differential equation (ODE) model that assumes exponential distribution for the latent and infectious stages is shown to be inadequate for assessing disease control strategies. By assuming arbitrarily distributed disease stages, a general integral equation model is developed, of which the simple ODE model is a special case. Analysis of the general model shows that the qualitative disease dynamics are determined by the reproductive number , which is a function of control measures. The integral equation model is shown to reduce to an ODE model when the disease stages are assumed to have a gamma distribution, which is more realistic than the exponential distribution. Outcomes of these models are compared regarding the effectiveness of various intervention policies. Numerical simulations suggest that models that assume exponential and non-exponential stage distribution assumptions can produce inconsistent predictions.  相似文献   

7.
Destabilising a biological system through periodic or stochastic forcing can lead to significant changes in system behaviour. Forcing can bring about coexistence when previously there was exclusion; it can excite massive system response through resonance, it can offset the negative effect of apparent competition and it can change the conditions under which the system can be invaded. Our main focus is on the invasion properties of continuous time models under periodic forcing. We show that invasion is highly sensitive to the strength, period, phase, shape and configuration of the forcing components. This complexity can be of great advantage if some of the forcing components are anthropogenic in origin. They can be turned into instruments of control to achieve specific objectives in ecology and disease management, for example. Culling, vaccination and resource regulation are considered. A general analysis is presented, based on the leading Lyapunov exponent criterion for invasion. For unstructured invaders, a formula for this exponent can typically be written down from the model equations. Whether forcing hinders or encourages invasion depends on two factors: the covariances between invader parameters and resident populations and the shifts in average resident population levels brought about by the forcing. The invasion dynamics of a structured invader are much more complicated but an analytic solution can be obtained in quadratic approximation for moderate forcing strength. The general theory is illustrated by a range of models drawn from ecology and epidemiology. The relationship between periodic and stochastic forcing is also considered.  相似文献   

8.
A clear and rigorous definition of muscle moment-arms in the context of musculoskeletal systems modelling is presented, using classical mechanics and screw theory. The definition provides an alternative to the tendon excursion method, which can lead to incorrect moment-arms if used inappropriately due to its dependency on the choice of joint coordinates. The definition of moment-arms, and the presented construction method, apply to musculoskeletal models in which the bones are modelled as rigid bodies, the joints are modelled as ideal mechanical joints and the muscles are modelled as massless, frictionless cables wrapping over the bony protrusions, approximated using geometric surfaces. In this context, the definition is independent of any coordinate choice. It is then used to solve a muscle-force estimation problem for a simple 2D conceptual model and compared with an incorrect application of the tendon excursion method. The relative errors between the two solutions vary between 0% and 100%.  相似文献   

9.
Statistical models support medical research by facilitating individualized outcome prognostication conditional on independent variables or by estimating effects of risk factors adjusted for covariates. Theory of statistical models is well‐established if the set of independent variables to consider is fixed and small. Hence, we can assume that effect estimates are unbiased and the usual methods for confidence interval estimation are valid. In routine work, however, it is not known a priori which covariates should be included in a model, and often we are confronted with the number of candidate variables in the range 10–30. This number is often too large to be considered in a statistical model. We provide an overview of various available variable selection methods that are based on significance or information criteria, penalized likelihood, the change‐in‐estimate criterion, background knowledge, or combinations thereof. These methods were usually developed in the context of a linear regression model and then transferred to more generalized linear models or models for censored survival data. Variable selection, in particular if used in explanatory modeling where effect estimates are of central interest, can compromise stability of a final model, unbiasedness of regression coefficients, and validity of p‐values or confidence intervals. Therefore, we give pragmatic recommendations for the practicing statistician on application of variable selection methods in general (low‐dimensional) modeling problems and on performing stability investigations and inference. We also propose some quantities based on resampling the entire variable selection process to be routinely reported by software packages offering automated variable selection algorithms.  相似文献   

10.
Motivated by an important biomarker study in nutritional epidemiology, we consider the combination of the linear mixed measurement error model and the linear seemingly unrelated regression model, hence Seemingly Unrelated Measurement Error Models. In our context, we have data on protein intake and energy (caloric) intake from both a food frequency questionnaire (FFQ) and a biomarker, and wish to understand the measurement error properties of the FFQ for each nutrient. Our idea is to develop separate marginal mixed measurement error models for each nutrient, and then combine them into a larger multivariate measurement error model: the two measurement error models are seemingly unrelated because they concern different nutrients, but aspects of each model are highly correlated. As in any seemingly unrelated regression context, the hope is to achieve gains in statistical efficiency compared to fitting each model separately. We show that if we employ a "full" model (fully parameterized), the combination of the two measurement error models leads to no gain over considering each model separately. However, there is also a scientifically motivated "reduced" model that sets certain parameters in the "full" model equal to zero, and for which the combination of the two measurement error models leads to considerable gain over considering each model separately, e.g., 40% decrease in standard errors. We use the Akaike information criterion to distinguish between the two possibilities, and show that the resulting estimates achieve major gains in efficiency. We also describe theoretical and serious practical problems with the Bayes information criterion in this context.  相似文献   

11.
本文研究了一类非自治SIRS传染病模型.在比较弱的条件下,我们不仅得到了疾病强一致持续的充分必要条件,还证明了疾病强一致持续与强持续的等价性.本文给出了新的闽值.另外也给出了疾病灭绝的条件.文献[7]中的结论被改进.  相似文献   

12.
We present an analysis of neuronal model behaviour with correlated synaptic inputs including the cases that correlated inputs are equivalent to exactly synchronized inputs and correlated inputs are not equivalent to exactly synchronized inputs. For the former case, it is found that the fully (synaptically) correlated inputs assumption (see Section 1 for definition), which is used in most, if not all, theoretical and experimental work in the past few years, results in a waste of resources and might be an unrealistic assumption; with an exactly balanced excitatory and inhibitory, and synaptically correlated input, the integrate-and-fire model simply behaves as a synchrony detector in certain parameter regions; the well-known diffusion model, upon which most theoretical work is based, fails to approximate the model with synaptically correlated Poisson inputs. A novel way to approximate synaptically correlated Poisson inputs is then presented;an optimization principle on neuronal models with partially (synaptically) correlated inputs is proposed, which enables us to predict microscopic structures in neuronal systems. For the latter case,with tightly synchronized inputs (see Section 1 for definition), the model behaviour depends on its integration time of input signals and could exhibit bursting discharge.for loosely synchronized inputs, we found that correlated inputs are equivalent to the post-spike voltage reset mechanism proposed in the literature.  相似文献   

13.
Summary We explore the use of a posterior predictive loss criterion for model selection for incomplete longitudinal data. We begin by identifying a property that most model selection criteria for incomplete data should consider. We then show that a straightforward extension of the Gelfand and Ghosh (1998, Biometrika, 85 , 1–11) criterion to incomplete data has two problems. First, it introduces an extra term (in addition to the goodness of fit and penalty terms) that compromises the criterion. Second, it does not satisfy the aforementioned property. We propose an alternative and explore its properties via simulations and on a real dataset and compare it to the deviance information criterion (DIC). In general, the DIC outperforms the posterior predictive criterion, but the latter criterion appears to work well overall and is very easy to compute unlike the DIC in certain classes of models for missing data.  相似文献   

14.
Osteoporosis, a disease of bone loss associated with aging and estrogen loss, can be crippling but is 'silent' (symptomless) prior to bone fracture. Despite its disastrous health effects, high prevalence, and enormous associated health care costs, osteoporosis lacked a universally accepted definition until 1992. In the 1980s, the development of more accurate medical imaging technologies to measure bone density spurred the medical community's need and demand for a common definition. The medical community tried, and failed, to resolve these differing definitions several times at consensus conferences and through published articles. These experts finally accepted a standard definition at an international consensus conference convened by the World Health Organization in 1992. The construction of osteoporosis as a disease of quantifiable risk diagnosed by medical imaging machines reflects contemporary trends in medicine, including the quantification of disease, the risk factor model, medical disciplinary boundaries, and global standardization of medical knowledge.  相似文献   

15.
基于传统的SIR传染病模型,本文提出了一类具有非线性发生率的带时滞的传染病模型,得出了当S0〈T= μ2+λ/β,对任意的时间滞后^,无病平衡点岛是局部渐近稳定的;当S0〉 μ2+λ/β,无病平衡点E0是不稳定的,此时,正平衡点E+是局部渐近稳定的.  相似文献   

16.
Migration (seasonal round-trip movement across relatively large distances) is common within the animal kingdom. This behaviour often incurs extreme costs in terms of time, energy, and/or survival. Climate, food, predation, and breeding are typically suggested as factors favouring the evolution of migration. Although disease regulation has also been considered, few studies consider it as the primary selective pressure for migration. Our aim was to determine, theoretically, under what conditions migration could reduce the long-term disease prevalence within a population, assuming the only benefits of migration are infection-related. We created two mathematical models, one where the population migrates annually and one where the entire population remains on the breeding ground year-round. In each we simulated disease transmission (frequency-dependent and density-dependent) and quantified eventual disease prevalence. In the migration model we varied the time spent migrating, disease-related migration mortality, and the overall migration mortality. When we compared results from the two models, we found that migration generally lowered disease prevalence. We found a population was healthier if it: (1) spent more time migrating (assuming no disease transmission during migration), (2) had higher disease-induced migration mortality, and (3) had an overall higher mortality when migrating (compared to not migrating). These results provide support for two previously proposed mechanisms by which migration can reduce disease prevalence (migratory escape and migratory cull), and also demonstrate that non-selective mortality during migration is a third mechanism. Our findings indicate that migration may be evolutionarily advantageous even if the only migratory benefit is disease control.  相似文献   

17.
A new definition of the concept of culture-bound syndrome demonstrates that culture-boundedness is common and applies as well to Western biomedical disease categories as to nonWestern categories. Culture-boundedness is important when a common disorder with a large sociopsychological component is frequently treated, but unsuccessfully. To improve intervention success, therapists must recognize and accept that clients and interventionists may employ widely dissimilar culture-bound explanatory models. Therapists must learn to synthesize among models, neither rejecting nor discounting those of clients. The fact that Western notions of cause are culture-bound has gone largely unrecognized because of the tendency among biomedical scientists to treat science as if it were culture-free and universally comprehensible. This is of course a naive and invalid understanding. These points are illustrated for the case of protein-energy malnutrition. If those who design and facilitate intervention to alleviate hunger can come to understand that the scientific explanatory model of protein-energy malnutrition is only one among several cogent models, they will be in a strong position to understand intervention failure and possibly to overcome it.  相似文献   

18.
The Darwin unification project is pursued. A meta-model encompassing an important class of population genetic models is formed by adding an abstract model of the number of successful gametes to the Price equation under uncertainty. A class of optimization programs are defined to represent the "individual-as-maximizing-agent analogy" in a general way. It is then shown that for each population genetic model there is a corresponding optimization program with which formal links can be established. These links provide a secure logical foundation for the commonplace biological principle that natural selection leads organisms to act as if maximizing their "fitness", provides a definition of "fitness", and clarifies the limitations of that principle. The situations covered do not include frequency dependence or social behaviour, but the approach is capable of extension.  相似文献   

19.
We use mathematically rigorous definitions of epidemiological concepts in order to derive a sequential combinatorial model of disease outbreak decomposition. We define the idea of a population specific 'disease signature' and use this in order to decompose and further understand outbreaks as incidents of spatial and temporal spread of disease exposure both in, and across, populations. This allows us to differentiate between different disease spread scenarios with a level of sensitivity that previous models were unable to provide. This perspective leads us to propose a new practical definition for 'outbreak'. In addition, we are able to use this model to understand, estimate, and, in some cases, correct for, the likely instances of reporting error inherent in disease surveillance. We demonstrate our model first with a hypothetical outbreak scenario and then in an analysis of suspected outbreaks of waterborne diseases in Massachusetts (MA) in 1995.  相似文献   

20.
The effects of social hierarchy on population dynamics and epidemiology are examined through a model which contains a number of fundamental features of hierarchical systems, but is simple enough to allow analytical insight. In order to allow for differences in birth rates, contact rates and movement rates among different sets of individuals the population is first divided into subgroups representing levels in the hierarchy. Movement, representing dominance challenges, is allowed between any two levels, giving a completely connected network. The model includes hierarchical effects by introducing a set of dominance parameters which affect birth rates in each social level and movement rates between social levels, dependent upon their rank. Although natural hierarchies vary greatly in form, the skewing of contact patterns, introduced here through non-uniform dominance parameters, has marked effects on the spread of disease. A simple homogeneous mixing differential equation model of a disease with SI dynamics in a population subject to simple birth and death process is presented and it is shown that the hierarchical model tends to this as certain parameter regions are approached. Outside of these parameter regions correlations within the system give rise to deviations from the simple theory. A Gaussian moment closure scheme is developed which extends the homogeneous model in order to take account of correlations arising from the hierarchical structure, and it is shown that the results are in reasonable agreement with simulations across a range of parameters. This approach helps to elucidate the origin of hierarchical effects and shows that it may be straightforward to relate the correlations in the model to measurable quantities which could be used to determine the importance of hierarchical corrections. Overall, hierarchical effects decrease the levels of disease present in a given population compared to a homogeneous unstructured model, but show higher levels of disease than structured models with no hierarchy. The separation between these three models is greatest when the rate of dominance challenges is low, reducing mixing, and when the disease prevalence is low. This suggests that these effects will often need to be considered in models being used to examine the impact of control strategies where the low disease prevalence behaviour of a model is critical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号