首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
1. Nonfaecal and faecal losses of Lichia amia were determined under controlled laboratory conditions at 15, 20 and 25 degrees C. 2. Ammonia-N was the major form of nonfaceal nitrogen excreted by L. amia and excretion rates were temperature-dependent. 3. The mass component b of the mass/ammonia-N excretion equation was temperature-independent and ranged from 0.63-0.65 and from 0.66-0.73 for starved and fed fish, respectively. 4. Mean nonfaecal energy loss (exogenous plus endogenous) was 3.78 +/- 1.99% of the ingested energy. 5. Assimilation efficiencies varied between individual fish and ranged from 61.24-93.79% (mean 80.76 +/- 7.14%) for dry matter and 87.52-98.22% (mean 94.09 +/- 2.22%) for energy. 6. The mean nonfaecal and faecal energy loss was 23.11 +/- 1.67% of the ingested energy.  相似文献   

2.
1. The nonfaecal and the faecal production of Pomadasys commersonni, a marine teleost, were investigated at 15, 20 and 25 degrees C. 2. Nonfaecal nitrogen excreted by starved and fed P. commersonni consisted mainly of ammonia-N. 3. The mass component b of the equation, AE = aMb (AE, ammonia-N in Mg-N/hr; M, fish mass in g) ranged from 0.68-0.72 and 0.71-0.75 for starved and fed fish, respectively, and was temperature-independent. 4. The mean percentage of the food energy lost as nonfaecal energy (exogenous plus endogenous) was 4.38 +/- 2.68%. 5. The faeces had a low energy content and ranged from 2.09 to 4.25 kJ/g. 6. Assimilation efficiencies showed some variation and ranged from 7.34 to 99.34% for dry matter and from 96.02 to 99.89% for energy. 7. The mean combined energy loss was 11.77% of the ingested energy.  相似文献   

3.
Nitrogen excretion by two surf zone gastropods, Bullia rhodostomaReeve and Bullia digitalis (Dillwyn) was determined under laboratoryconditions. The forms of nitrogen excreted and the effects ofmass, temperature, short-term starvation and feeding on excretionrates were determined for each species. The excretion ratesof B. rhodostoma removed directly from the surf zone (within2 h of capture) were also determined at three temperatures.No significant differences in the forms of nitrogen excretedwere found between starved and fed whelks or between species.Ammonia was the major form of nitrogen excreted with amino acidsof secondary importance. Urea was not detected and a small percentageof total dissolved nitrogen (TDN) excreted was unaccounted forin both species. Mass significantly influenced the rate of ammoniaexcretion in both species. No significant difference in slopes(common b = 0.60) were found between starved B. rhodostoma andB. digitalis or between fed whelks of the two species (commonb = 0.54). Mass adjusted mean ammonia excretion rates of starvedB. rhodostoma and those removed directly from the surf zone(‘natural diet’) did not differ significantly. Adjustedmean ammonia excretion rates of fed whelks were significantlyhigher than ‘starved’ excretion rates in both species.Temperature did not significantly influence ammonia excretionrates of fed B. rhodostoma or starved and fed B. digitalis.Bullia recycle 14.45 to 23.98 g N per metre strip of surf zoneper year which constitutes less than 1% of total phytoplanktonrequirements in the surf zone. (Received 15 August 1989; accepted 16 October 1989)  相似文献   

4.
The effect of feeding time (dawn or midnight) on nitrogen excretion and energy expenditure was studied in immature rainbow trout using measurements of respiratory gas exchange. Fish (mean individual weight 70 g) were maintained indoors under natural photoperiod and fed by hand (commercial food pellets) at a rate of 1% weight/day−1. Rates of ammonia and CO2 excretion and O2 uptake were measured every hour. Ammonia excretion increased immediately after feeding in fish fed at midnight, and 2h after feeding in fish fed at dawn. Ammonia excretion and energy supply from protein catabolism, were higher in trout fed at midnight than in those fed at dawn, while total energy expenditure was the same in both groups. The results suggested that trout fed in phase with their natural feeding rhythm use dietary protein more efficiently for growth than do trout fed out of phase with the natural rhythm.  相似文献   

5.
Physiological energetics of cobia Rachycentron canadum were quantified for 18 to 82 days post-hatch (dph) hatchery-reared juveniles to better understand energy transformation and its implications in growth and survival. Mean oxygen consumption rates ( ; mg O2 h−1) of fish fed ad libitum and fish that were starved significantly increased with increasing wet mass (M; g), = 1·4291 M 0·8119 and = 1·1784 M 0·7833, respectively, with a significant reduction in mean metabolic rates of starved fish (19 to 27% specific dynamic action; SDA). Total ammonia nitrogen excretion rates ( A MM, μmol h−1) also scaled with M and significantly decreased after starvation. Mean mass-specific A MM and urea excretion rates are the highest reported in the literature, with urea accounting for approximately half the total nitrogen excretion measured in both fed and starved fish. Relatively high energetic rates may allow cobia to develop rapidly into pre-juveniles and be less susceptible to predation and starvation at a comparatively early age.  相似文献   

6.
Larvae of Carcinus maenas L. were reared in the laboratory from hatching through metamorphosis at 9, 12, and 18°C. Dry weight (DW) and elemental contents of carbon (C), nitrogen (N), and hydrogen (H) were analysed at short intervals through successive larval moulting cycles (four zoea-stages, megalopa), and newly metamorphosed crabs. C. maenas larvae grew significantly during all instars, at all temperatures tested. Biomass (DW, C, N, H) and energy (Joule) slightly declined shortly before ecdysis in zoea stages. This terminal decrease was more distinct in the megalopa stage, where ≈39 and 83% of the maximum energy attained, was lost at 12 and 18°C, respectively. Changes of biomass and energy in successive moult cycles showed best fits to quadratic equations, whereas their maximum in successive larval instars formed exponential sequences with time. Due to parabolic growth curves, biomass and energy accumulation within single instars were discussed as maximum (MG) and effective growth (EG), considering gain both at times of maximum biomass, and shortly before ecdysis. Metamorphosing larvae achieved EG with 1137% (DW), 1195% (C), 1108% (N), 1395% (H), 1339% (Joule) at 12°C, and 1140% (DW), 1099% (C), 1133% (N), 1225% (H), 1107% (Joule) at 18°C, relative to newly hatched zoea-1. Ash content and inorganic C in newly hatched zoea-1, were 29.4% and 5.5% ash, respectively. The stoichiometric C H N method of Gnaiger & Bitterlich was used to assess protein, lipid, and carbohydrate compositions. Obviously proteins formed the major part of larval biomass (>50% DW). C: N ratios indicate that more lipid than protein was built up shortly after moulting, but relatively more protein was subsequently accumulated. Temperature effects on larval growth (MG, EG), growth rates (GR), and gross growth efficiencies (K1) were discussed. C. maenas zoea stages accumulated energy and biomass with higher efficiencies at 18 than at 12°C. Megalopa growth seemed to be limited at 18°C, showing lower K1 values than at 12°C. N was accumulated with higher efficiencies than C in all larval stages. Characteristic variations in larval K1 values between premoult and ecdysis were discussed. Cumulative gross growth efficiencies (MG-related) were calculated as ≈11 and 10%, at 12 and 18°C, respectively.  相似文献   

7.
The effect of starvation on supercooling temperature (SCP) distribution was investigated in adults and larvae of Alphitobius diaperinus (Coleoptera: Tenebrionidae).

The mean values for SCPs of adults fed at 20°C were −14.5±2.4°C (31 males) and −10.3±1.3°C (29 females). The distribution of the SCPs of these control adults was unimodal. No significant differences were observed in either mean wet weight or mean dry weight between males and females.

The mean values for SCPs of adults starved for 1 month at 20°C were found to be bimodal due to sexual dimorphism. The mean SCPs for males was lower (−17±2.6°C; 28) than that for females (−11.2±1.8°C; 26). No significant differences were observed in either mean dry weight or wet weight between males and females.

The SCPs of both fed and starved larvae, kept for 1 month at 20°C were −12.3±2.4°C (fed) and −18.0±2.6°C (starved).  相似文献   


8.
Greenback flounder Rhombosolea tapirina ( c. 2 g) fed to satiation had significantly ( P <0·01) higher feed consumption in the evening than in the morning whereas there was no difference between feeding times for flounder fed restricted rations (1 or 2% body weight per day) because they consumed all of the ration. Differences in growth performance were due to feeding time and ration. Carcass moisture, lipid and energy content were significantly ( P <0·001) different between rations; length gain was significantly affected by feeding time ( P <0·05) and ration ( P <0·001); weight gain showed a significant ( P <0·001) interaction between feeding time and ration. The relationship between feed consumption and specific growth rate showed that the exponential gradient was significantly higher ( P <0·01) for the evening fed fish and indicated feed efficiency for evening fed fish increased as feed consumption increased. Urea excretion increased from 12–20 to 58–63% of total nitrogen excretion at the 1 and 3% rations, respectively. Ammonia and urea excretion were significantly affected by ration ( P <0·001) and feeding time ( P <0·05). Fish fed the 2% ration in the evening had higher growth efficiency and significantly ( P <0·01) lower rates of urea excretion than fish fed 2 or 3% ration in the morning. It is suggested that the higher energetic costs associated with differences in ammonia and urea excretion contributed to differences in growth efficiency.  相似文献   

9.

1. 1.|The difference between tissue temperatures and ambient water temperatures (ΔT) of the ectothermic Arctic charr (Salvelinus alpinus L.) ranged between 0.2 and 0.6°C.

2. 2.|For fish held at 5.7°C there were no significant differences in ΔT of exercising fish and those of controls.

3. 3.|By contrast, for fish held at 1.7°C sustained exercise led to a significant increase in ΔT of all body compartments compared with fish held in standing water (controls).

4. 4.|It is suggested that Arctic charr are capable of a limited control of metabolic heat exchange between body compartments and surrounding water when subjected to sustained exercise and ambient temperatures <2°C.

Author Keywords: Salmonidae; sustained exercise; body temperature; Arctic charr; Salvelinus alpinus  相似文献   


10.
The knowledge about the combined effects of higher temperature and dietary nutrient quality on the diurnal nitrogenous excretion rates is very limited in farmed fish species including European sea bass. Therefore this study investigated the combined effects of increasing levels (30 vs. 60 %) of dietary fish oil replacement by equal mixture of cotton seed oil (CSO) and canola oils (CO) and two different ambient temperature (24 vs. 30 °C) on diurnal total ammonia and Urea–N excretion rates in European sea bass (Dicentrarchus labrax). Experimental diets were fed to fish three times (08:30–13:30–18:30 h) at a fixed rate of 3 % BW.d−1. The daily consumed nitrogen and energy intake of fish were similar during the investigation in different dietary treatments. However, the daily excretion rates of TAN, total nitrogen (TAN+Urea–N) and total nitrogen expressed as a proportion of consumed nitrogen by the European sea bass maintained at 30 °C were found to be significantly (P<0.001) higher (40 to 50%) than fish maintained at 24 °C in all the dietary treatments suggesting higher rates of deamination of ingested amino acids with increased temperature. Daily urea–nitrogen excretion of fish accounted for between 20–30 % of total ammonia–nitrogen excretion rates for each dietary treatment at 24 and 30 °C and appeared to be slightly increased by the temperature but neither the temperature nor the amount of plant oil mixture inclusion in diets or the interaction of these two factors had a significant effect on the urea nitrogen excretion rates of fish in different dietary treatments. However, Urea–N excretion rates in fish fed fish oil only (FO) diet were significantly higher (P<0.05) compared to that of fish fed diets containing increasing amount of plant oil mixture (VOM30 and VOM 60) during the light-on phase of the sampling period at 24 °C indicating periodic enhancement of permeability for urea at excretion sites. Further research is needed in order to elucidate the mechanism of nitrogenous excretion in European sea bass fed plant oil containing diets under extreme summer time temperatures employing total dietary fish oil replacement to reveal the possible effects of alteration in cell membrane phospholipid composition on enzymes responsible for nitrogenous excretion and/or detoxification.  相似文献   

11.
Metabolic characteristics of the sea cucumber Apostichopus japonicus (Selenka) during aestivation were studied in the laboratory. The effects of water temperature on oxygen consumption rate (OCR) and ammonia-N excretion rate (AER) in A. japonicus were determined by the Winkler and Hypobromite methods, respectively. Mature (large, 148.5 ± 15.4 g, medium 69.3 ± 6.9 g) and immature (small, 21.2 ± 4.7 g) individuals aestivated at water temperatures of 20 and 25 °C, respectively. The metabolic characteristics of mature individuals were different from immature individuals during this period. The OCR of mature sea cucumbers peaked at 20 °C, and then dropped significantly at higher temperatures, whereas the OCR of the immature animals continued to increase slightly, even beyond the aestivation temperature. The AER of mature individuals peaked at 20 °C, while that of the immature animals peaked at 25 °C. The relationships between dry weight (DW) and absolute oxygen consumption (R) and absolute ammonia-N excretion (N) could be described by the regression equation R or N = aWb. With the exception of 15 °C, the O / N ratios (calculated in atomic equivalents) of large size sea cucumbers was close to 20 across the temperatures used in this study, indicating that their energy source was a combination of lipid and protein. On the other hand, apart from small individuals maintained at 10 °C, the O / N ratios of the medium and small sea cucumbers were close to 10, indicating that protein was their major energy source. The O / N ratios in all size groups remained unchanged after aestivation was initiated.  相似文献   

12.
Biogas-plant effluent collected from a KVIC model biogas-plant fed on cattle waste was utilised in fish polyculture. Biogas-plant effluent was applied at 0·15% concentration at 3-day intervals. The growth rate of Labeo rohita was 4·52 ±0 ·75 g fish−1 day−1, of Cirrhina mrigala 3·36 ± 0·48 g fish day−1 and of Cyprinus carpio was 1·82 ± 0·41 g fish−1 day−1. Total fish production was 13·44 ± 0·77 kg 0·002 ha−1 year−1 (6653 kg ha−1 year−1) without any supplementary fish-feed.  相似文献   

13.
Excretion of ammonia, urea and primary amines (assayed as fluorescamine-positivesubstances, FPS) was measured in the Antarctic limpet Nacellaconcinna. The mean contributions to overall excretion rate were89% ammonia, 8% urea and 3% FPS, although in some individualsurea formed almost 40% total excreted nitrogen and in othersprimary amines formed over 30%. Ammonia and urea excretion rateswere not correlated, suggesting the ureagenesis has a specificphysiological role and is not simply an alternative end-pointto ammonia. In starved limpets urea excretion at first increasedby at least x2, and then declined to low levels after 44 days.Ammonia excretion also increased, but only after 20 days, andthen stayed high until at least day 44. These different patternsconfirm the independent roles of ammonia and urea productionin Nacella. (Received 10 June 1993; accepted 25 August 1993)  相似文献   

14.
Nitrogen excreted as ammonium, urea, and dissolved primary amines (DPA), and nitrogen ingested by the planktonic calanoid copepod, Acartia tonsa, were measured while fed 4 foods with different N/C ratios in high (500 μg C l− 1) and low (50 μg C l− 1) concentrations. Adult copepods were fed the ciliate, Uronema marinum (N/C = 0.26), the diatom, Thalassiosira weissflogii, in log-phase growth (N/C = 0.20), and in senescent-phase growth (N/C = 0.12), and detritus derived from the saltmarsh grass, Spartina alterniflora, (N/C = 0.04). Total nitrogen excreted ranged from 0.06 to 0.18 μg N copepod− 1 d− 1 whereas nitrogen ingested exhibited considerably more variation (0.01 to 0.39 μg N copepod − 1d − 1). Ammonium was the dominant form of nitrogen excreted and was influenced by both food concentration and N/C ratio. Copepods fed foods with N/C ratios resembling their own body composition (log-phase diatoms and ciliates) excreted more ammonium when fed higher concentrations of food. In contrast, copepods fed foods with lower N/C ratios than their own body composition excreted more ammonium when fed lower concentrations of food, suggesting that they were catabolizing body protein for survival. Excretion of urea varied with food N/C ratio, with more urea excreted when the copepods were fed higher N/C foods. The excretion of DPA did not vary with either food concentration or food N/C ratio. Homeostasis serves to conserve the N/C ratio of copepods. Thus nitrogen excretion by healthy copepods should be expected to increase with ingestion only when copepods have high quantities of nitrogen-rich foods relative to the body composition of the copepods.  相似文献   

15.
An extracellular protease from the marine bacterium Sphingomonas paucimobilis, strain 116, isolated from the stomach of Antarctic krill, Euphausia superba Dana, was purified and characterized. The excretion of protease was maximal at temperatures from 5 to 10°C, i.e. below the temperature optimum for the strain growth (15°C). The highly purified enzyme was a metalloprotease [sensivity to ethylenediaminetetraacetic acid (EDTA)] and showed maximal activity against proteins at 20–30°C and pH 6.5–7.0, and towards N-benzoyl-tyrosine ethyl ester (BzTyrOEt) at pH 8.0. At 0°C the enzyme retained as much as 47% of maximal activity in hydrolysis of urea denatured haemoglobin (Hb) (at pH 7.0), and at −5 and −10°C, 37 and 30%, respectively. The metalloprotease was stable up to 30°C for 15 min and up to 20°C for 60 min. These results indicate that the proteinase from S. paucimobilis 116 is a cold-adapted enzyme.  相似文献   

16.
Oxygen consumption and ammonia excretion rates were assessed for Terebratulina retusa (L.) held under 3 different regimes of temperature and food availability. These were: 5.6?C, no food (cold, starved); 5.8?C, food present (cold, fed) and 10.7?C food present (warm, fed), which simulated winter conditions, summer conditions and an intermediate treatment. Regressions of oxygen consumption on ash‐free dry weight (AFDW) had slopes which were not significantly different from each other and ranged from 0.953 to 0.999. A common slope of 0.976 was calculated and intercepts based on the common slope used to compare oxygen consumption in each treatment. The rise from cold, starved conditions to warm, fed was 24.5 per cent and this was significant (P < 0.05). Other differences were not significant (P > 0.05) but the cold, fed result was 12.6 per cent higher than cold, starved. Therefore feeding and temperature probably account for equivalent proportions of the rise in metabolism from winter to summer. Ammonia production data were much more variable. Excretion rates of a 50 mg AFDW individual (in ng‐at NH3‐N.h‐1) were as follows: cold, starved: 30.2 cold, fed: 7.1; and warm, fed: 22.9. Oxygen to nitrogen (O:N) ratios reflected these results. Mean O:N ratios were: cold, starved: 8.0; cold, fed: 42.4; warm, fed: 16.3. This shows that the simulated winter group relied heavily on protein to fuel their metabolism, the simulated summer group were less dependent on protein and the intermediate group probably used lipids and carbohydrates to fuel metabolic demands. This possibly reflected a trade off between food supply and increased metabolism from treatment to treatment, demonstrating a flexibility which could have been a contributing factor in the ecological tolerance and geological longevity of some brachiopods.  相似文献   

17.
Tritonia diomedea Bergh was reared from oviposition, through metamorphosis to reproductive maturity in the laboratory. The larvae of T. diomedea are planktotrophic and undergo considerable shell growth (from 144.6–329 μ average maximum shell length). Metamorphosis does not require induction, but there may be a preference to metamorphose in the presence of the probable adult prey, a small Virgularia sp. Larvae in cultures fed no food, Dunaliella tertiolecta Butcher Isochrysis galbana Parke, or Monochrysis lutheri Droop did not achieve metamorphic competence at near ambient sea-water temperatures (11.9±1.3 and 13.0±0.8°C). Larvae from cultures fed Monochrysis at room temperature (20.8±1.5°C) or fed a 1 : 1 mixture of Isochrysis and Monochrysis at near ambient sea-water temperatures did metamorphose. Even so, only those larvae fed the 1 : 1 mixture survived more than a few days following metamorphosis. Adult behavioral patterns developed gradually, feeding being first observed at 5 days, swimming in response to NaCl crystals at about 60 days, copulation at about 272 days, and oviposition at about 277 days after metamorphosis. Growth rates were determined for field collected Tritonia diomedea; smaller animals gained and lost weight relatively faster than larger animals.  相似文献   

18.
Leaching of ammonium (NH4+) and dissolved organic carbon (DOC) from food pellets used at three fish farms in the Mediterranean Sea and the faeces of four different species of farm-associated wild fish (Trachurus mediterraneus, Mugil cephalus, Trachinotus ovatus and Boops boops) were determined. They were placed in seawater and agitated slowly (5 cm s− 1) to reflect natural conditions during their fall to the sediment. Two temperatures were tested, 25 °C and 15 °C, to assess the influence of seasons on leaching rates. Leaching from fish faeces was generally higher compared to food pellets. T. mediterraneus faeces leached more NH4+ and DOC than M. cephalus, T. ovatus and B. boops. The results showed that there is an important addition of NH4+ and DOC to the water column during sinking of the faeces and that this is species-dependent. Water turbulence and faeces composition seemed to have a higher influence than temperature on the leaching process. Due to the high abundance and biomass of farm-associated fish in the Mediterranean and their capacity to remove waste, they appear to be an important component for models that predict the impact of aquaculture. Large biomasses of wild fish at fish farms may reduce the impact on benthic systems but increase the nitrogen and carbon loads into the water column, affecting the pelagic system and modifying the spatial dispersion of wastes.  相似文献   

19.
Largemouth bass ( Micropterus salmoides ) with an average weight of 45.5 g were used to study ration level effects on nitrogen excretion, nitrogen retention, and gross efficiency of utilization of nitrogen for growth. Bass were starved 3 to 4 days and then each bass was placed into an aquarium containing a known volume of water. One day after the fishes were placed in aquaria, nitrogen excretion rates were determined; this rate is the maintenance nitrogen excretion. Each fish was then fed one or more shiners ( Notropis cornutus ); fish were fed only once. Nitrogen excretion measurements were made daily until the rates were similar to maintenance rates. The nitrogen excretion rates for each day after feeding which were above the maintenance nitrogen excretion were combined and reflect the total nitrogen excretion for a given ration level. All ration levels were converted to nitrogen consumption in mg and nitrogen absorption was calculated from subtracting the average faecal nitrogen from nitrogen consumption. From data on nitrogen consumption, nitrogen absorption, nitrogen excretion, and faecal nitrogen, calculations were made for nitrogen retention and gross efficiency of utilization of nitrogen for growth.
As ration level and nitrogen absorption increased, nitrogen excretion increased and is described by the equation, Y = 8.56+0.40 X , where Y is total nitrogen excretion and X is nitrogen absorption. Nitrogen retention also increased with nitrogen absorption and is described by the equation, Y =–8.57+0.60 X , where Y is nitrogen retention and X is nitrogen absorption. Efficiency increases rapidly above maintenance, but levels off at higher ration levels and approaches an asymptote of 60%.  相似文献   

20.
Algal and invertebrate species are less abundant towards higher zones of the intertidal, where the greatest variations in physical environmental conditions occur. Mobile predators such as fishes that inhabit high intertidal rockpools are thus exposed to wide variations in physical conditions and to a low abundance and quality of food. We used an aquarium with a temperature gradient in the laboratory to assesed whether dietary quality differences modify temperature preferences of Girella laevifrons, one of the most abundant transitory fishes inhabiting rocky shores along the coast of Chile. Our results indicate that food quality clearly modifies temperature preferences in this species. Animals fed on high quality bivalves selected intermediate temperatures (16–18°C) while those fed on lower quality algae selected lower temperatures (10–12°C). Control fish not subjected to the temperature gradient did not select portions of the aquarium differentially. The thermal selectivity of G. laevifrons in relation to the optimization of digestive processes and mechanisms of energy conservation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号