首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.

Background

Multistability of oscillatory and silent regimes is a ubiquitous phenomenon exhibited by excitable systems such as neurons and cardiac cells. Multistability can play functional roles in short-term memory and maintaining posture. It seems to pose an evolutionary advantage for neurons which are part of multifunctional Central Pattern Generators to possess multistability. The mechanisms supporting multistability of bursting regimes are not well understood or classified.

Methodology/Principal Findings

Our study is focused on determining the bio-physical mechanisms underlying different types of co-existence of the oscillatory and silent regimes observed in a neuronal model. We develop a low-dimensional model typifying the dynamics of a single leech heart interneuron. We carry out a bifurcation analysis of the model and show that it possesses six different types of multistability of dynamical regimes. These types are the co-existence of 1) bursting and silence, 2) tonic spiking and silence, 3) tonic spiking and subthreshold oscillations, 4) bursting and subthreshold oscillations, 5) bursting, subthreshold oscillations and silence, and 6) bursting and tonic spiking. These first five types of multistability occur due to the presence of a separating regime that is either a saddle periodic orbit or a saddle equilibrium. We found that the parameter range wherein multistability is observed is limited by the parameter values at which the separating regimes emerge and terminate.

Conclusions

We developed a neuronal model which exhibits a rich variety of different types of multistability. We described a novel mechanism supporting the bistability of bursting and silence. This neuronal model provides a unique opportunity to study the dynamics of networks with neurons possessing different types of multistability.  相似文献   

2.
We explore the effects of stochastic sodium (Na) channel activation on the variability and dynamics of spiking and bursting in a model neuron. The complete model segregates Hodgin-Huxley-type currents into two compartments, and undergoes applied current-dependent bifurcations between regimes of periodic bursting, chaotic bursting, and tonic spiking. Noise is added to simulate variable, finite sizes of the population of Na channels in the fast spiking compartment.During tonic firing, Na channel noise causes variability in interspike intervals (ISIs). The variance, as well as the sensitivity to noise, depend on the model's biophysical complexity. They are smallest in an isolated spiking compartment; increase significantly upon coupling to a passive compartment; and increase again when the second compartment also includes slow-acting currents. In this full model, sufficient noise can convert tonic firing into bursting.During bursting, the actions of Na channel noise are state-dependent. The higher the noise level, the greater the jitter in spike timing within bursts. The noise makes the burst durations of periodic regimes variable, while decreasing burst length duration and variance in a chaotic regime. Na channel noise blurs the sharp transitions of spike time and burst length seen at the bifurcations of the noise-free model. Close to such a bifurcation, the burst behaviors of previously periodic and chaotic regimes become essentially indistinguishable.We discuss biophysical mechanisms, dynamical interpretations and physiological implications. We suggest that noise associated with finite populations of Na channels could evoke very different effects on the intrinsic variability of spiking and bursting discharges, depending on a biological neuron's complexity and applied current-dependent state. We find that simulated channel noise in the model neuron qualitatively replicates the observed variability in burst length and interburst interval in an isolated biological bursting neuron.  相似文献   

3.
The leech neuron model studied here has a remarkable dynamical plasticity. It exhibits a wide range of activities including various types of tonic spiking and bursting. In this study we apply methods of the qualitative theory of dynamical systems and the bifurcation theory to analyze the dynamics of the leech neuron model with emphasis on tonic spiking regimes. We show that the model can demonstrate bi-stability, such that two modes of tonic spiking coexist. Under a certain parameter regime, both tonic spiking modes are represented by the periodic attractors. As a bifurcation parameter is varied, one of the attractors becomes chaotic through a cascade of period-doubling bifurcations, while the other remains periodic. Thus, the system can demonstrate co-existence of a periodic tonic spiking with either periodic or chaotic tonic spiking. Pontryagins averaging technique is used to locate the periodic orbits in the phase space.  相似文献   

4.
Capturing the response behavior of spiking neuron models with rate-based models facilitates the investigation of neuronal networks using powerful methods for rate-based network dynamics. To this end, we investigate the responses of two widely used neuron model types, the Izhikevich and augmented multi-adapative threshold (AMAT) models, to a range of spiking inputs ranging from step responses to natural spike data. We find (i) that linear-nonlinear firing rate models fitted to test data can be used to describe the firing-rate responses of AMAT and Izhikevich spiking neuron models in many cases; (ii) that firing-rate responses are generally too complex to be captured by first-order low-pass filters but require bandpass filters instead; (iii) that linear-nonlinear models capture the response of AMAT models better than of Izhikevich models; (iv) that the wide range of response types evoked by current-injection experiments collapses to few response types when neurons are driven by stationary or sinusoidally modulated Poisson input; and (v) that AMAT and Izhikevich models show different responses to spike input despite identical responses to current injections. Together, these findings suggest that rate-based models of network dynamics may capture a wider range of neuronal response properties by incorporating second-order bandpass filters fitted to responses of spiking model neurons. These models may contribute to bringing rate-based network modeling closer to the reality of biological neuronal networks.  相似文献   

5.
The gastric system of the lobster stomatogastric ganglion has previously been thought to include no neurons capable of endogenous bursting. We describe conditions under which one of the motorneurons, the CP cell, can burst endogenously in a free-running manner in the absence of other phasic network activity. Isolated preparations of the foregut nervous system were used, and the CP bursting was either spontaneous or was activated by continuous stimulation of an input nerve. Three criteria were applied to establish the endogenous nature of such burst generation in CP: absence of phasic input, reset of the bursting pattern by pulses of current in a characteristic phase-dependent manner, and modulation of burst rate by sustained injected current. (1) The firing of other cells which are known to be related synaptically to CP was monitored in nerve records. These other cells were either silent or fired only tonically. Cross-correlograms showed that CP bursting was not ascribable to phasic activity in these other network cells. (2) A depolarizing current pulse of sufficient strength injected intracellularly between bursts triggered a burst prematurely and reset the subsequent rhythm. A hyperpolarizing pulse during a burst terminated it and reset the subsequent rhythm. Reset behavior was similar to that described for other endogenous bursters. (3) Application of a positive-going ramp current initially caused an increase in burst rate, as described for other endogenous bursters. However, further depolarization caused a slower burst rate due to lengthening of the individual bursts, although mean firing frequency continued to increase throughout the range tested. Such free-running endogenous repetitive bursting appeared to result from the CP's ability to produce slow regenerative depolarizations (“plateau potentials”). When bursting was present, so was the plateau property, as determined by I–V analysis and by the ability of brief current pulses to trigger and terminate bursts. The previous inability to observe endogenous bursting in preparations with central input removed may be due to the usual absence of the plateau property in such preparations.  相似文献   

6.
Several studies have shown that bursting neurons can encode information in the number of spikes per burst: As the stimulus varies, so does the length of individual bursts.Therepresented stimuli, however, vary substantially among different sensory modalities and different neurons.The goal of this paper is to determine which kind of stimulus features can be encoded in burst length, and how those features depend on the mathematical properties of the underlying dynamical system.We show that the initiation and termination of each burst is triggered by specific stimulus features whose temporal characteristsics are determined by the types of bifurcations that initiate and terminate firing in each burst. As only a few bifurcations are possible, only a restricted number of encoded features exists. Here we focus specifically on describing parabolic, square-wave and elliptic bursters. We find that parabolic bursters, whose firing is initiated and terminated by saddle-node bifurcations, behave as prototypical integrators: Firing is triggered by depolarizing stimuli, and lasts for as long as excitation is prolonged. Elliptic bursters, contrastingly, constitute prototypical resonators, since both the initiating and terminating bifurcations possess well-defined oscillation time scales. Firing is therefore triggered by stimulus stretches of matching frequency and terminated by a phase-inversion in the oscillation. The behavior of square-wave bursters is somewhat intermediate, since they are triggered by a fold bifurcation of cycles of well-defined frequency but are terminated by a homoclinic bifurcation lacking an oscillating time scale. These correspondences show that stimulus selectivity is determined by the type of bifurcations. By testing several neuron models, we also demonstrate that additional biological properties that do not modify the bifurcation structure play a minor role in stimulus encoding. Moreover, we show that burst-length variability (and thereby, the capacity to transmit information) depends on a trade-off between the variance of the external signal driving the cell and the strength of the slow internal currents modulating bursts. Thus, our work explicitly links the computational properties of bursting neurons to the mathematical properties of the underlying dynamical systems.  相似文献   

7.
It is difficult to design electronic nonlinear devices capable of reproducing complex oscillations because of the lack of general constructive rules, and because of stability problems related to the dynamical robustness of the circuits. This is particularly true for current analog electronic circuits that implement mathematical models of bursting and spiking neurons. Here we describe a novel, four-dimensional and dynamically robust nonlinear analog electronic circuit that is intrinsic excitable, and that displays frequency adaptation bursting and spiking oscillations. Despite differences from the classical Hodgkin–Huxley (HH) neuron model, its bifurcation sequences and dynamical properties are preserved, validating the circuit as a neuron model. The circuit's performance is based on a nonlinear interaction of fast–slow circuit blocks that can be clearly dissected, elucidating burst's starting, sustaining and stopping mechanisms, which may also operate in real neurons. Our analog circuit unit is easily linked and may be useful in building networks that perform in real-time.  相似文献   

8.
Complex anatomical and physiological structure of an excitable tissue (e.g., cardiac tissue) in the body can represent different electrical activities through normal or abnormal behavior. Abnormalities of the excitable tissue coming from different biological reasons can lead to formation of some defects. Such defects can cause some successive waves that may end up to some additional reorganizing beating behaviors like spiral waves or target waves. In this study, formation of defects and the resulting emitted waves in an excitable tissue are investigated. We have considered a square array network of neurons with nearest-neighbor connections to describe the excitable tissue. Fundamentally, electrophysiological properties of ion currents in the body are responsible for exhibition of electrical spatiotemporal patterns. More precisely, fluctuation of accumulated ions inside and outside of cell causes variable electrical and magnetic field. Considering undeniable mutual effects of electrical field and magnetic field, we have proposed the new Hindmarsh–Rose (HR) neuronal model for the local dynamics of each individual neuron in the network. In this new neuronal model, the influence of magnetic flow on membrane potential is defined. This improved model holds more bifurcation parameters. Moreover, the dynamical behavior of the tissue is investigated in different states of quiescent, spiking, bursting and even chaotic state. The resulting spatiotemporal patterns are represented and the time series of some sampled neurons are displayed, as well.  相似文献   

9.
The aim of this study is to produce travelling waves in a planar net of artificial spiking neurons. Provided that the parameters of the waves – frequency, wavelength and orientation – can be sufficiently controlled, such a network can serve as a model of the spinal pattern generator for swimming and terrestrial quadruped locomotion. A previous implementation using non-spiking, sigmoid neurons lacked the physiological plausibility that can only be attained using more realistic spiking neurons. Simulations were conducted using three types of spiking neuronal models. First, leaky integrate-and-fire neurons were used. Second, we introduced a phenomenological bursting neuron. And third, a canonical model neuron was implemented which could reproduce the full dynamics of the Hodgkin–Huxley neuron. The conditions necessary to produce appropriate travelling waves corresponded largely to the known anatomy and physiology of the spinal cord. Especially important features for the generation of travelling waves were the topology of the local connections – so-called off-centre connectivity – the availability of dynamic synapses and, to some extent, the availability of bursting cell types. The latter were necessary to produce stable waves at the low frequencies observed in quadruped locomotion. In general, the phenomenon of travelling waves was very robust and largely independent of the network parameters and emulated cell types.  相似文献   

10.
We develop a new computationally efficient approach for the analysis of complex large-scale neurobiological networks. Its key element is the use of a new phenomenological model of a neuron capable of replicating important spike pattern characteristics and designed in the form of a system of difference equations (a map). We developed a set of map-based models that replicate spiking activity of cortical fast spiking, regular spiking and intrinsically bursting neurons. Interconnected with synaptic currents these model neurons demonstrated responses very similar to those found with Hodgkin-Huxley models and in experiments. We illustrate the efficacy of this approach in simulations of one- and two-dimensional cortical network models consisting of regular spiking neurons and fast spiking interneurons to model sleep and activated states of the thalamocortical system. Our study suggests that map-based models can be widely used for large-scale simulations and that such models are especially useful for tasks where the modeling of specific firing patterns of different cell classes is important.  相似文献   

11.
An understanding of the nonlinear dynamics of bursting is fundamental in unraveling structure-function relations in nerve and secretory tissue. Bursting is characterized by alternations between phases of rapid spiking and slowly varying potential. A simple phase model is developed to study endogenous parabolic bursting, a class of burst activity observed experimentally in excitable membrane. The phase model is motivated by Rinzel and Lee's dissection of a model for neuronal parabolic bursting (J. Math. Biol. 25, 653–675 (1987)). Rapid spiking is represented canonically by a one-variable phase equation that is coupled bi-directionally to a two-variable slow system. The model is analyzed in the slow-variable phase plane, using quasi steady-state assumptions and formal averaging. We derive a reduced system to explore where the full model exhibits bursting, steady-states, continuous and modulated spiking. The relative speed of activation and inactivation of the slow variables strongly influences the burst pattern as well as other dynamics. We find conditions of the bistability of solutions between continuous spiking and bursting. Although the phase model is simple, we demonstrate that it captures many dynamical features of more complex biophysical models.This research was partially supported by NSF-JOINT RESEARCH grant 8803573, grant from CONCYT and DGAPA(UNAM) Mexico for H. Carrillo, and for the S. M. Baer NSF DMS-9107538  相似文献   

12.
Out-of-phase bursting is a functionally important behavior displayed by central pattern generators and other neural circuits. Understanding this complex activity requires the knowledge of the interplay between the intrinsic cell properties and the properties of synaptic coupling between the cells. Here we describe a simple method that allows us to investigate the existence and stability of anti-phase bursting solutions in a network of two spiking neurons, each possessing a T-type calcium current and coupled by reciprocal inhibition. We derive a one-dimensional map which fully characterizes the genesis and regulation of anti-phase bursting arising from the interaction of the T-current properties with the properties of synaptic inhibition. This map is the burst length return map formed as the composition of two distinct one-dimensional maps that are each regulated by a different set of model parameters. Although each map is constructed using the properties of a single isolated model neuron, the composition of the two maps accurately captures the behavior of the full network. We analyze the parameter sensitivity of these maps to determine the influence of both the intrinsic cell properties and the synaptic properties on the burst length, and to find the conditions under which multistability of several bursting solutions is achieved. Although the derivation of the map relies on a number of simplifying assumptions, we discuss how the principle features of this dimensional reduction method could be extended to more realistic model networks. Action Editor: John Rinzel  相似文献   

13.
We extend a quantitative model for low-voltage, slow-wave excitability based on the T-type calcium current (Wang et al. 1991) by juxtaposing it with a Hodgkin-Huxley-like model for fast sodium spiking in the high voltage regime to account for the distinct firing modes of thalamic neurons. We employ bifurcation analysis to illustrate the stimulus-response behavior of the full model under both voltage regimes. The model neuron shows continuous sodium spiking when depolarized sufficiently from rest. Depending on the parameters of calcium current inactivation, there are two types of low-voltage responses to a hyperpolarizing current step: a single rebound low threshold spike (LTS) upon release of the step and periodic LTSs. Bursting is seen as sodium spikes ride the LTS crest. In both cases, we analyze the LTS burst response by projecting its trajectory into a fast/slow phase plane. We also use phase plane methods to show that a potassium A-current shifts the threshold for sodium spikes, reducing the number of fast sodium spikes in an LTS burst. It can also annihilate periodic bursting. We extend the previous work of Rose and Hindmarsh (1989a–c) for a thalamic neuron and propose a simpler model for thalamic activity. We consider burst modulation by using a neuromodulator-dependent potassium leakage conductance as a control parameter. These results correspond with experiments showing that the application of certain neurotransmitters can switch firing modes. Received: 18 July 1993/Accepted in revised form: 22 January 1994  相似文献   

14.
A formal neuron has been studied mathematically. The spiking behaviour of a single neuron has been considered and the influence of the other neurons has been replaced by an average activity level. Four different kinds of spiking behaviour are predicted by the model: B (bursts), C (continuous), P (periodic) and S (silent) neurons and several real neurons can be classified within these four categories. Some properties of the spiking neuron are calculated: 1) the time between spikes, 2) the spike train length and 3) the silent time. Because these magnitudes can be measured in the laboratory, an experimental validation of the model is proposed.  相似文献   

15.
Cellular properties and modulation of the identified neurons of the posterior cardiac plate-pyloric system in the stomatogastric ganglion of a stomatopod, Squilla oratoria, were studied electrophysiologically. Each class of neurons involved in the cyclic bursting activity was able to trigger an endogenous, slow depolarizing potential (termed a driver potential) which sustained bursting. Endogenous oscillatory properties were demonstrated by the phase reset behavior in response to brief stimuli during ongoing rhythm. The driver potential was produced by membrane voltage-dependent activation and terminated by an active repolarization. Striking enhancement of bursting properties of all the cell types was induced by synaptic activation via extrinsic nerves, seen as increases in amplitude or duration of driver potentials, spiking rate during a burst, and bursting rate. The motor pattern produced under the influence of extrinsic modulatory inputs continued for a long time, relative to that in the absence of activation of modulatory inputs. Voltage-dependent conductance mechanisms underlying postinhibitory rebound and driver potential responses were modified by inputs. It is concluded that endogenous cellular properties, as well as synaptic circuitry and extrinsic inputs, contribute to generation of the rhythmic motor pattern, and that a motor system and its component neurons have been highly conserved during evolution between stomatopods and decapods.Abbreviations AB anterior burster neuron - CoG commissural ganglion - CPG central pattern generator - lvn lateral ventricular nerve - OG oesophageal ganglion - pcp posterior cardiac plate - PCP pcp constrictor neuron - PD pyloric dilator neuron - PY pyloric constrictor neuron - son superior oesophageal nerve - STG stomatogastric ganglion - stn stomatogastric nerve  相似文献   

16.
Epileptic seizure dynamics span multiple scales in space and time. Understanding seizure mechanisms requires identifying the relations between seizure components within and across these scales, together with the analysis of their dynamical repertoire. Mathematical models have been developed to reproduce seizure dynamics across scales ranging from the single neuron to the neural population. In this study, we develop a network model of spiking neurons and systematically investigate the conditions, under which the network displays the emergent dynamic behaviors known from the Epileptor, which is a well-investigated abstract model of epileptic neural activity. This approach allows us to study the biophysical parameters and variables leading to epileptiform discharges at cellular and network levels. Our network model is composed of two neuronal populations, characterized by fast excitatory bursting neurons and regular spiking inhibitory neurons, embedded in a common extracellular environment represented by a slow variable. By systematically analyzing the parameter landscape offered by the simulation framework, we reproduce typical sequences of neural activity observed during status epilepticus. We find that exogenous fluctuations from extracellular environment and electro-tonic couplings play a major role in the progression of the seizure, which supports previous studies and further validates our model. We also investigate the influence of chemical synaptic coupling in the generation of spontaneous seizure-like events. Our results argue towards a temporal shift of typical spike waves with fast discharges as synaptic strengths are varied. We demonstrate that spike waves, including interictal spikes, are generated primarily by inhibitory neurons, whereas fast discharges during the wave part are due to excitatory neurons. Simulated traces are compared with in vivo experimental data from rodents at different stages of the disorder. We draw the conclusion that slow variations of global excitability, due to exogenous fluctuations from extracellular environment, and gap junction communication push the system into paroxysmal regimes. We discuss potential mechanisms underlying such machinery and the relevance of our approach, supporting previous detailed modeling studies and reflecting on the limitations of our methodology.  相似文献   

17.
To investigate how extracellular electric field modulates neuron activity, a reduced two-compartment neuron model in the presence of electric field is introduced in this study. Depending on neuronal geometric and internal coupling parameters, the behaviors of the model have been studied extensively. The neuron model can exist in quiescent state or repetitive spiking state in response to electric field stimulus. Negative electric field mainly acts as inhibitory stimulus to the neuron, positive weak electric field could modulate spiking frequency and spike timing when the neuron is already active, and positive electric fields with sufficient intensity could directly trigger neuronal spiking in the absence of other stimulations. By bifurcation analysis, it is observed that there is saddle-node on invariant circle bifurcation, supercritical Hopf bifurcation and subcritical Hopf bifurcation appearing in the obtained two parameter bifurcation diagrams. The bifurcation structures and electric field thresholds for triggering neuron firing are determined by neuronal geometric and coupling parameters. The model predicts that the neurons with a nonsymmetric morphology between soma and dendrite, are more sensitive to electric field stimulus than those with the spherical structure. These findings suggest that neuronal geometric features play a crucial role in electric field effects on the polarization of neuronal compartments. Moreover, by determining the electric field threshold of our biophysical model, we could accurately distinguish between suprathreshold and subthreshold electric fields. Our study highlights the effects of extracellular electric field on neuronal activity from the biophysical modeling point of view. These insights into the dynamical mechanism of electric field may contribute to the investigation and development of electromagnetic therapies, and the model in our study could be further extended to a neuronal network in which the effects of electric fields on network activity may be investigated.  相似文献   

18.
Noise-induced complete synchronization and frequency synchronization in coupled spiking and bursting neurons are studied firstly. The effects of noise and coupling are discussed. It is found that bursting neurons are easier to achieve firing synchronization than spiking ones, which means that bursting activities are more important for information transfer in neuronal networks. Secondly, the effects of noise on firing synchronization in a noisy map neuronal network are presented. Noise-induced synchronization and temporal order are investigated by means of the firing rate function and the order index. Firing synchronization and temporal order of excitatory neurons can be greatly enhanced by subthreshold stimuli with resonance frequency. Finally, it is concluded that random perturbations play an important role in firing activities and temporal order in neuronal networks.  相似文献   

19.
The large number of variables involved in many biophysical models can conceal potentially simple dynamical mechanisms governing the properties of its solutions and the transitions between them as parameters are varied. To address this issue, we extend a novel model reduction method, based on “scales of dominance,” to multi-compartment models. We use this method to systematically reduce the dimension of a two-compartment conductance-based model of a crustacean pyloric dilator (PD) neuron that exhibits distinct modes of oscillation—tonic spiking, intermediate bursting and strong bursting. We divide trajectories into intervals dominated by a smaller number of variables, resulting in a locally reduced hybrid model whose dimension varies between two and six in different temporal regimes. The reduced model exhibits the same modes of oscillation as the 16 dimensional model over a comparable parameter range, and requires fewer ad hoc simplifications than a more traditional reduction to a single, globally valid model. The hybrid model highlights low-dimensional organizing structure in the dynamics of the PD neuron, and the dependence of its oscillations on parameters such as the maximal conductances of calcium currents. Our technique could be used to build hybrid low-dimensional models from any large multi-compartment conductance-based model in order to analyze the interactions between different modes of activity.  相似文献   

20.
Randomly connected populations of spiking neurons display a rich variety of dynamics. However, much of the current modeling and theoretical work has focused on two dynamical extremes: on one hand homogeneous dynamics characterized by weak correlations between neurons, and on the other hand total synchrony characterized by large populations firing in unison. In this paper we address the conceptual issue of how to mathematically characterize the partially synchronous “multiple firing events” (MFEs) which manifest in between these two dynamical extremes. We further develop a geometric method for obtaining the distribution of magnitudes of these MFEs by recasting the cascading firing event process as a first-passage time problem, and deriving an analytical approximation of the first passage time density valid for large neuron populations. Thus, we establish a direct link between the voltage distributions of excitatory and inhibitory neurons and the number of neurons firing in an MFE that can be easily integrated into population–based computational methods, thereby bridging the gap between homogeneous firing regimes and total synchrony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号