首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Genes of the major histocompatibility complex (MHC) have provided some of the clearest examples of how natural selection generates discordances between adaptive and neutral variation in natural populations. The type and intensity of selection as well as the strength of genetic drift are believed to be important in shaping the resulting pattern of MHC diversity. However, evaluating the relative contribution of multiple microevolutionary forces is challenging, and empirical studies have reported contrasting results. For instance, balancing selection has been invoked to explain high levels of MHC diversity and low population differentiation in comparison with other nuclear markers. Other studies have shown that genetic drift can sometimes overcome selection and then patterns of genetic variation at adaptive loci cannot be discerned from those occurring at neutral markers. Both empirical and simulated data also indicate that loss of genetic diversity at adaptive loci can occur faster than at neutral loci when selection and population bottlenecks act simultaneously. Diversifying selection, on the other hand, explains accelerated MHC divergence as the result of spatial variation in pathogen‐mediated selective regimes. Because of all these possible scenarios and outcomes, collecting information from as many study systems as possible, is crucial to enhance our understanding about the evolutionary forces driving MHC polymorphism. In this issue, Miller and co‐workers present an illuminating contribution by combining neutral markers (microsatellites) and adaptive MHC class I loci during the investigation of genetic differentiation across island populations of tuatara Sphenodon punctatus. Their study of geographical variation reveals a major role of genetic drift in shaping MHC variation, yet they also discuss some support for diversifying selection.  相似文献   

2.
Understanding genetic diversity in natural populations is a fundamental objective of evolutionary biology. The immune genes of the major histocompatibility complex (MHC) are excellent candidates to study such diversity because they are highly polymorphic in populations. Although balancing selection may be responsible for maintaining diversity at these functionally important loci, temporal variation in selection pressure has rarely been examined. We examine temporal variation in MHC class IIB diversity in nine guppy (Poecilia reticulata) populations over two years. We found that five of the populations changed significantly more at the MHC than at neutral (microsatellite) loci as measured by FST, which suggests that the change at the MHC was due to selection and not neutral processes. Additionally, pairwise population differentiation measures at the MHC were higher in 2007 than in 2006, with the signature of selection changing from homogenizing to diversifying selection or neutral evolution. Interestingly, within the populations the magnitude of the change at the MHC between years was related to the change in the proportion of individuals infected by a common parasite, indicating a link between genetic structure and the parasite. Our data thereby implicate temporal variation in selective pressure as an important mechanism maintaining diversity at the MHC in wild populations.  相似文献   

3.
The extent to which pathogens maintain the extraordinary polymorphism at vertebrate Major Histocompatibility Complex (MHC) genes via balancing selection has intrigued evolutionary biologists for over half a century, but direct tests remain challenging. Here we examine whether a well-characterized epidemic of Mycoplasmal conjunctivitis resulted in balancing selection on class II MHC in a wild songbird host, the house finch (Carpodacus mexicanus). First, we confirmed the potential for pathogen-mediated balancing selection by experimentally demonstrating that house finches with intermediate to high multi-locus MHC diversity are more resistant to challenge with Mycoplasma gallisepticum. Second, we documented sequence and diversity-based signatures of pathogen-mediated balancing selection at class II MHC in exposed host populations that were absent in unexposed, control populations across an equivalent time period. Multi-locus MHC diversity significantly increased in exposed host populations following the epidemic despite initial compromised diversity levels from a recent introduction bottleneck in the exposed host range. We did not observe equivalent changes in allelic diversity or heterozygosity across eight neutral microsatellite loci, suggesting that the observations reflect selection rather than neutral demographic processes. Our results indicate that a virulent pathogen can exert sufficient balancing selection on class II MHC to rescue compromised levels of genetic variation for host resistance in a recently bottlenecked population. These results provide evidence for Haldane's long-standing hypothesis that pathogens directly contribute to the maintenance of the tremendous levels of genetic variation detected in natural populations of vertebrates.  相似文献   

4.
Genetic diversity is fundamental to maintaining the long‐term viability of populations, yet reduced genetic variation is often associated with small, isolated populations. To examine the relationship between demography and genetic variation, variation at hypervariable loci (e.g., microsatellite DNA loci) is often measured. However, these loci are selectively neutral (or near neutral) and may not accurately reflect genomewide variation. Variation at functional trait loci, such as the major histocompatibility complex (MHC), can provide a better assessment of adaptive genetic variation in fragmented populations. We compared patterns of microsatellite and MHC variation across three Eastern Massasauga (Sistrurus catenatus) populations representing a gradient of demographic histories to assess the relative roles of natural selection and genetic drift. Using 454 deep amplicon sequencing, we identified 24 putatively functional MHC IIB exon 2 alleles belonging to a minimum of six loci. Analysis of synonymous and nonsynonymous substitution rates provided evidence of historical positive selection at the nucleotide level, and Tajima's D provided support for balancing selection in each population. As predicted, estimates of microsatellite allelic richness, observed, heterozygosity, and expected heterozygosity varied among populations in a pattern qualitatively consistent with demographic history and abundance. While MHC allelic richness at the population and individual levels revealed similar trends, MHC nucleotide diversity was unexpectedly high in the smallest population. Overall, these results suggest that genetic variation in the Eastern Massasauga populations in Illinois has been shaped by multiple evolutionary mechanisms. Thus, conservation efforts should consider both neutral and functional genetic variation when managing captive and wild Eastern Massasauga populations.  相似文献   

5.
Genetic diversity of major histocompatibility complex (MHC) genes is linked to reduced pathogen susceptibility in amphibians, but few studies also examine broad spatial and temporal patterns of MHC and neutral genetic diversity. Here, we characterized range-wide MHC diversity in the Northern leopard frog, Rana pipiens, a species found throughout North America that is experiencing disease-related declines. We used previously sequenced neutral markers (mitochondrial DNA and microsatellites), sequenced an expressed MHC class IIß gene fragment, and measured infection prevalence and intensity of the global fungal pathogen Batrachochytrium dendrobatidis (Bd) across 14 populations. Four populations were sampled across two decades, enabling temporal comparisons of selection and demography. We recovered 37 unique MHC alleles, including 17 that were shared across populations. Phylogenetic and population genetic patterns between MHC and neutral markers were incongruent, and five MHC codon positions associated with peptide binding were under positive selection. MHC heterozygosity, but not neutral marker heterozygosity, was a significant factor explaining spatial patterns of Bd prevalence, whereas only environmental variables predicted Bd intensity. MHC allelic richness (AR) decreased significantly over time but microsatellite-based AR did not, highlighting a loss of functional immunogenetic diversity that may be associated with Bd selective pressures. MHC supertype 4 was significantly associated with an elevated risk of Bd infection, whereas one supertype 2 allele was associated with a nearly significant reduced risk of Bd. Taken together, these results provide evidence that positive selection contributes to MHC class IIß evolution in R. pipiens and suggest that functional MHC differences across populations may contribute to disease adaptation.Subject terms: Genetic variation, Immunogenetics  相似文献   

6.
The identification of the factors responsible for genetic variation and differentiation at adaptive loci can provide important insights into the evolutionary process and is crucial for the effective management of threatened species. We studied the impact of environmental viral richness and abundance on functional diversity and differentiation of the MHC class Ia locus in populations of the black‐spotted pond frog (Pelophylax nigromaculatus), an IUCN‐listed species, on 24 land‐bridge islands of the Zhoushan Archipelago and three nearby mainland sites. We found a high proportion of private MHC alleles in mainland and insular populations, corresponding to 32 distinct functional supertypes, and strong positive selection on MHC antigen‐binding sites in all populations. Viral pathogen diversity and abundance were reduced at island sites relative to the mainland, and islands housed distinctive viral communities. Standardized MHC diversity at island sites exceeded that found at neutral microsatellites, and the representation of key functional supertypes was positively correlated with the abundance of specific viruses in the environment (Frog virus 3 and Ambystoma tigrinum virus). These results indicate that pathogen‐driven diversifying selection can play an important role in maintaining functionally important MHC variation following island isolation, highlighting the importance of considering functionally important genetic variation and host–pathogen associations in conservation planning and management.  相似文献   

7.
Neutral genetic markers are commonly used to understand the effects of fragmentation and population bottlenecks on genetic variation in threatened species. Although neutral markers are useful for inferring population history, the analysis of functional genes is required to determine the significance of any observed geographical differences in variation. The genes of the major histocompatibility complex (MHC) are well‐known examples of genes of adaptive significance and are particularly relevant to conservation because of their role in pathogen resistance. In this study, we survey diversity at MHC class I loci across a range of tuatara populations. We compare the levels of MHC variation with that observed at neutral microsatellite markers to determine the relative roles of balancing selection, diversifying selection and genetic drift in shaping patterns of MHC variation in isolated populations. In general, levels of MHC variation within tuatara populations are concordant with microsatellite variation. Tuatara populations are highly differentiated at MHC genes, particularly between the northern and Cook Strait regions, and a trend towards diversifying selection across populations was observed. However, overall our results indicate that population bottlenecks and isolation have a larger influence on patterns of MHC variation in tuatara populations than selection.  相似文献   

8.
The genes of the major histocompatibility complex (MHC) are an important component of the vertebrate immune system and can provide insights into the role of pathogen‐mediated selection in wild populations. Here, we examined variation at the MHC class II peptide‐binding region in 27 populations of sockeye salmon (Oncorhynchus nerka), distributed among three distinct spawning ecotypes, from a complex of interconnected rivers and lakes in south‐western Alaska. We also obtained genotypes from 90 putatively neutral single nucleotide polymorphisms for each population to compare the relative roles of demography and selection in shaping the observed MHC variation. We found that MHC divergence was generally partitioned by spawning ecotype (lake beaches, rivers and streams) and was 30 times greater than variation at neutral markers. Additionally, we observed substantial differences in modes of selection and diversity among ecotypes, with beach populations displaying higher levels of directional selection and lower MHC diversity than the other two ecotypes. Finally, the level of MHC differentiation in our study system was comparable to that observed over much larger geographic ranges, suggesting that MHC variation does not necessarily increase with increasing spatial scale and may instead be driven by fine‐scale differences in pathogen communities or pathogen virulence. The low levels of neutral structure and spatial proximity of populations in our study system indicate that MHC differentiation can be maintained through strong selective pressure even when ample opportunities for gene flow exist.  相似文献   

9.
Pathogen-driven balancing selection maintains high genetic diversity in many vertebrates, particularly in the major histocompatibility complex (MHC) immune system gene family, which is often associated with disease susceptibility. In large natural populations where subpopulations face different pathogen pressures, the MHC should show greater genetic differentiation within a species than neutral markers. We examined genetic diversity at the MHC-DQB locus and nine putatively neutral microsatellite markers in grey seals (Halichoerus grypus) from eight United Kingdom (UK) colonies, the Faeroe Islands and Sable Island, Canada. Five DQB alleles were identified in grey seals, which varied in prevalence across the grey seal range. Among the seal colonies, significant differences in DQB allele and haplotype frequencies and in average DQB heterozygosity were observed. Additionally, the DQB gene exhibited greater differentiation among colonies compared with neutral markers, yet a weaker pattern of isolation by distance (IBD). After correcting for the underlying IBD pattern, subpopulations breeding in similar habitats were more similar to one another in DQB allele frequencies than populations breeding in different habitats, but the same did not hold true for microsatellites, suggesting that habitat-specific pathogen pressure influences MHC evolution. Overall, the data are consistent with selection at MHC-DQB loci in grey seals with both varying selective pressures and geographic population structure appearing to influence the DQB genetic composition of breeding colonies.  相似文献   

10.
Captive bred individuals are often released into natural environments to supplement resident populations. Captive bred salmonid fishes often exhibit lower survival rates than their wild brethren and stocking measures may have a negative influence on the overall fitness of natural populations. Stocked fish often stem from a different evolutionary lineage than the resident population and thus may be maladapted for life in the wild, but this phenomenon has also been linked to genetic changes that occur in captivity. In addition to overall loss of genetic diversity via captive breeding, adaptation to captivity has become a major concern. Altered selection pressure in captivity may favour alleles at adaptive loci like the Major Histocompatibility Complex (MHC) that are maladaptive in natural environments. We investigated neutral and MHC-linked genetic variation in three autochthonous and three hatchery populations of Austrian brown trout (Salmo trutta). We confirm a positive selection pressure acting on the MHC II β locus, whereby the signal for positive selection was stronger in hatchery versus wild populations. Additionally, diversity at the MHC II β locus was higher, and more uniform among hatchery samples compared to wild populations, despite equal levels of diversity at neutral loci. We postulate that this stems from a combination of stronger genetic drift and a weakening of positive selection at this locus in wild populations that already have well adapted alleles for their specific environments.  相似文献   

11.
The ability of natural populations to adapt to new environmental conditions is crucial for their survival and partly determined by the standing genetic variation in each population. Populations with higher genetic diversity are more likely to contain individuals that are better adapted to new circumstances than populations with lower genetic diversity. Here, we use both neutral and major histocompatibility complex (MHC) markers to test whether small and highly fragmented populations hold lower genetic diversity than large ones. We use black grouse as it is distributed across Europe and found in populations with varying degrees of isolation and size. We sampled 11 different populations; five continuous, three isolated, and three small and isolated. We tested patterns of genetic variation in these populations using three different types of genetic markers: nine microsatellites and 21 single nucleotide polymorphisms (SNPs) which both were found to be neutral, and two functional MHC genes that are presumably under selection. The small isolated populations displayed significantly lower neutral genetic diversity compared to continuous populations. A similar trend, but not as pronounced, was found for genotypes at MHC class II loci. Populations were less divergent at MHC genes compared to neutral markers. Measures of genetic diversity and population genetic structure were positively correlated among microsatellites and SNPs, but none of them were correlated to MHC when comparing all populations. Our results suggest that balancing selection at MHC loci does not counteract the power of genetic drift when populations get small and fragmented.  相似文献   

12.
Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite‐mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter‐ and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance.  相似文献   

13.
The extraordinary polymorphism of major histocompatibility complex (MHC) genes is considered a paradigm of pathogen‐mediated balancing selection, although empirical evidence is still scarce. Furthermore, the relative contribution of balancing selection to shape MHC population structure and diversity, compared to that of neutral forces, as well as its interaction with other evolutionary processes such as hybridization, remains largely unclear. To investigate these issues, we analyzed adaptive (MHC‐DAB gene) and neutral (11 microsatellite loci) variation in 156 brown trout (Salmo trutta complex) from six wild populations in central Italy exposed to introgression from domestic hatchery lineages (assessed with the LDH gene). MHC diversity and structuring correlated with those at microsatellites, indicating the substantial role of neutral forces. However, individuals carrying locally rare MHC alleles/supertypes were in better body condition (a proxy of individual fitness/parasite load) regardless of the zygosity status and degree of sequence dissimilarity of MHC, hence supporting balancing selection under rare allele advantage, but not heterozygote advantage or divergent allele advantage. The association between specific MHC supertypes and body condition confirmed in part this finding. Across populations, MHC allelic richness increased with increasing admixture between native and domestic lineages, indicating introgression as a source of MHC variation. Furthermore, introgression across populations appeared more pronounced for MHC than microsatellites, possibly because initially rare MHC variants are expected to introgress more readily under rare allele advantage. Providing evidence for the complex interplay among neutral evolutionary forces, balancing selection, and human‐mediated introgression in shaping the pattern of MHC (functional) variation, our findings contribute to a deeper understanding of the evolution of MHC genes in wild populations exposed to anthropogenic disturbance.  相似文献   

14.
Genes of the major histocompatibility complex (MHC) are the most polymorphic loci known in vertebrates. Two main hypotheses have been put forward to explain the maintenance of MHC diversity: pathogen-mediated selection and MHC-based mate choice. Host–parasite interactions can maintain MHC diversity via frequency-dependent selection, heterozygote advantage, and diversifying selection (spatially and/or temporally heterogeneous selection). In this study, we wished to investigate the nature of selection acting on the MHC class I across spatially structured populations of house sparrows ( Passer domesticus ) in France. To infer the nature of the selection, we compared patterns of population differentiation based on two types of molecular markers: MHC class I and microsatellites. This allowed us to test whether the observed differentiation at MHC genes merely reflects demographic and/or stochastic processes. At the global scale, diversifying selection seems to be the main factor maintaining MHC diversity in the house sparrow. We found that (i) overall population differentiation at MHC was stronger than for microsatellites, (ii) MHC marker showed significant isolation by distance. In addition, the slope of the regression of F ST on geographical distance was significantly steeper for MHC than for microsatellites due to a stronger pairwise differentiation between populations located at large geographical distances. These results are in agreement with the hypothesis that spatially heterogeneous selective pressures maintain different MHC alleles at local scales, possibly resulting in local adaptation.  相似文献   

15.
Self-incompatibility, a common attribute of plant development, forms a classical paradigm of balancing selection in natural populations, in particular negative frequency-dependent selection. Under negative frequency-dependent selection population genetics theory predicts that the S-locus, being in command of self-incompatibility, keeps numerous alleles in equal frequencies demonstrating a wide allelic range. Moreover, while natural populations exhibit a higher within population genetic diversity, a reduction of population differentiation and increase of effective migration rate is expected in comparison to neutral loci. Allelic frequencies were investigated in terms of distribution and genetic structure at the gametophytic self-incompatibility locus in five wild cherry (Prunus avium L.) populations. Comparisons were also made between the differentiation at the S-locus and at the SSR loci. Theoretical expectations under balancing selection were congruent to the results observed. The S-locus showed broad multiplicity (16 S-alleles), high genetic diversity, and allelic isoplethy. Genetic structure at the self-incompatibility locus was almost four times lower than at 11 nSSR loci. Analysis of molecular variance revealed that only 5?% of the total genetic variation concerns differentiation among populations. In conclusion, the wealth of S-allelic diversity found in natural wild cherry populations in Greece is useful not only in advancing basic population genetics research of self-incompatibility systems in wild cherry but also in the development of breeding programs.  相似文献   

16.
Patterns of spatio-temporal genetic variation at a class II major histocompatibility complex (MHC) locus and multiple microsatellite loci were analysed within and between three water vole metapopulations in Scotland, UK. Comparisons of MHC and microsatellite spatial genetic differentiation, based on standardised tests between two demographically asynchronous zones within a metapopulation, suggested that spatial MHC variation was affected by balancing selection, directional selection and random genetic drift, but that the relative effects of these microevolutionary forces vary temporally. At the metapopulation level, between-year differentiation for MHC loci was significantly correlated with that of microsatellites, signifying that neutral factors such as migration and drift were primarily responsible for overall temporal genetic change at the metapopulation scale. Between metapopulations, patterns of genetic differentiation implied that, at large spatial scales, MHC variation was primarily affected by directional selection and drift. Levels of MHC heterozygosity in excess of Hardy–Weinberg expectations were consistent with overdominant balancing selection operating on MHC variation within metapopulations. However, this effect was not constant among all samples, indicating temporal variation in the strength of selection relative to other factors. The results highlight the benefit of contrasting variation at MHC with neutral markers to separate the effects of stochastic and deterministic microevolutionary forces, and add to a growing body of evidence showing that the mode and relative strength of selection acting on MHC diversity varies both spatially and temporally.  相似文献   

17.
Insular populations have attracted the attention of evolutionary biologists because of their morphological and ecological peculiarities with respect to their mainland counterparts. Founder effects and genetic drift are known to distribute neutral genetic variability in these demes. However, elucidating whether these evolutionary forces have also shaped adaptive variation is crucial to evaluate the real impact of reduced genetic variation in small populations. Genes of the major histocompatibility complex (MHC) are classical examples of evolutionarily relevant loci because of their well-known role in pathogen confrontation and clearance. In this study, we aim to disentangle the partial roles of genetic drift and natural selection in the spatial distribution of MHC variation in insular populations. To this end, we integrate the study of neutral (22 microsatellites and one mtDNA locus) and MHC class II variation in one mainland (Iberia) and two insular populations (Fuerteventura and Menorca) of the endangered Egyptian vulture (Neophron percnopterus). Overall, the distribution of the frequencies of individual MHC alleles (n=17 alleles from two class II B loci) does not significantly depart from neutral expectations, which indicates a prominent role for genetic drift over selection. However, our results point towards an interesting co-evolution of gene duplicates that maintains different pairs of divergent alleles in strong linkage disequilibrium on islands. We hypothesize that the co-evolution of genes may counteract the loss of genetic diversity in insular demes, maximize antigen recognition capabilities when gene diversity is reduced, and promote the co-segregation of the most efficient allele combinations to cope with local pathogen communities.  相似文献   

18.
The major histocompatibility complex (MHC), an important component of the vertebrate immune system, provides an important suite of genes to examine the role of genetic diversity at non‐neutral loci for population persistence. We contrasted patterns of diversity at the two classical MHC loci in sockeye salmon (Oncorhynchus nerka), MHC class I (UBA) and MHC class II (DAB), and neutral microsatellite loci across 70 populations spanning the species range from Washington State to Japan. There was no correlation in allelic richness or heterozygosity between MHC loci or between MHC loci and microsatellites. The two unlinked MHC loci may be responding to different selective pressures; the distribution of FST values for the two loci was uncorrelated, and evidence for both balancing and directional selection on alleles and lineages of DAB and UBA was observed in populations throughout the species range but rarely on both loci within a population. These results suggest that fluctuating selection has resulted in the divergence of MHC loci in contemporary populations.  相似文献   

19.
The genes of the major histocompatibility complex (MHC) are a key component of the adaptive immune system and among the most variable loci in the vertebrate genome. Pathogen-mediated natural selection and MHC-based disassortative mating are both thought to structure MHC polymorphism, but their effects have proven difficult to discriminate in natural systems. Using the first model of MHC dynamics incorporating both survival and reproduction, we demonstrate that natural and sexual selection produce distinctive signatures of MHC allelic diversity with critical implications for understanding host–pathogen dynamics. While natural selection produces the Red Queen dynamics characteristic of host–parasite interactions, disassortative mating stabilizes allele frequencies, damping major fluctuations in dominant alleles and protecting functional variants against drift. This subtle difference generates a complex interaction between MHC allelic diversity and population size. In small populations, the stabilizing effects of sexual selection moderate the effects of drift, whereas pathogen-mediated selection accelerates the loss of functionally important genetic diversity. Natural selection enhances MHC allelic variation in larger populations, with the highest levels of diversity generated by the combined action of pathogen-mediated selection and disassortative mating. MHC-based sexual selection may help to explain how functionally important genetic variation can be maintained in populations of conservation concern.  相似文献   

20.
Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst  = 0.074–0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST  = 0.041–0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号