首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
Hormones coordinate developmental, physiological, and behavioral processes within and between all living organisms. They orchestrate and shape organogenesis from early in development, regulate the acquisition, assimilation, and utilization of nutrients to support growth and metabolism, control gamete production and sexual behavior, mediate organismal responses to environmental change, and allow for communication of information between organisms. Genes that code for hormones; the enzymes that synthesize, metabolize, and transport hormones; and hormone receptors are important targets for natural selection, and variation in their expression and function is a major driving force for the evolution of morphology and life history. Hormones coordinate physiology and behavior of populations of organisms, and thus play key roles in determining the structure of populations, communities, and ecosystems. The field of endocrinology is concerned with the study of hormones and their actions. This field is rooted in the comparative study of hormones in diverse species, which has provided the foundation for the modern fields of evolutionary, environmental, and biomedical endocrinology. Comparative endocrinologists work at the cutting edge of the life sciences. They identify new hormones, hormone receptors and mechanisms of hormone action applicable to diverse species, including humans; study the impact of habitat destruction, pollution, and climatic change on populations of organisms; establish novel model systems for studying hormones and their functions; and develop new genetic strains and husbandry practices for efficient production of animal protein. While the model system approach has dominated biomedical research in recent years, and has provided extraordinary insight into many basic cellular and molecular processes, this approach is limited to investigating a small minority of organisms. Animals exhibit tremendous diversity in form and function, life-history strategies, and responses to the environment. A major challenge for life scientists in the 21st century is to understand how a changing environment impacts all life on earth. A full understanding of the capabilities of organisms to respond to environmental variation, and the resilience of organisms challenged by environmental changes and extremes, is necessary for understanding the impact of pollution and climatic change on the viability of populations. Comparative endocrinologists have a key role to play in these efforts.  相似文献   

2.
3.
Cultured rat pituitary gonadotrophs under whole-cell voltage clamp conditions respond to the hypothalamic hormone GnRH with synchronized oscillatory changes in both cytosolic Ca2+ concentration ([Ca2+]i) and [Ca2+]i-activated, apamin-sensitive K+ current (IK(Ca)). We found, and report here for the first time, that in GnRH-stimulated cells a brief depolarizing pulse can elicit a transient [Ca2+]i rise similar to the endogenous cycle. Furthermore, Ca2+ entry during a single depolarizing pulse was found to shift the phase of subsequent endogenous [Ca2+]i oscillations, which thereafter continue to occur at their previous frequency before the pulse. Application of two consecutive depolarizing pulses showed that the size of the [Ca2+]i rise evoked by the second pulse depended on the time lapsed between two consecutive pulses, indicating that each endogenous or evoked [Ca2+]i rise cycle leaves the Ca2+ release mechanism of the gonadotroph in a refractory state. Recovery from this condition can be described by an exponential function of the time lapsed between the pulses (time constant of ca. 1 s). We propose that the underlying mechanism in both refractoriness after endogenous cycles and phase resetting by a brief pulse of Ca2+ entry involves the InsP3 receptor-channel molecule presumed to be located on the cytosolic aspect of the endoplasmic reticulum membrane.  相似文献   

4.
Summary 1. A variety of neuroendocrine approaches has been used to characterize cellular mechanisms governing luteinizing hormone-releasing hormone (LHRH) pulse generation. We review recentin vivo microdialysis,in vitro superfusion, andin situ hybridization experiments in which we tested the hypothesis that the amplitude and frequency of LHRH pulses are subject to independent regulation via distinct and identifiable cellular pathways.2. Augmentation of LHRH pulse amplitude is proposed as a central feature of preovulatory LHRH surges. Three mechanisms are described which may contribute to this increase in LHRH pulse amplitude: (a) increased LHRH gene expression, (b) augmentation of facilitatory neurotransmission, and (c) increased responsiveness of LHRH neurons to afferent synaptic signals. Neuropeptide Y (NPY) is examined as a prototypical afferent transmitter regulating the generation of LHRH surges through the latter two mechanisms.3. Retardation of LHRH pulse generator frequency is postulated to mediate negative feedback actions of gonadal hormones. Evidence supporting this hypothesis is reviewed, including results ofin vivo monitoring experiments in which LHRH pulse frequency, but not amplitude, is shown to be increased following castration. A role for noradrenergic neurons as intervening targets of gonadal hormone negative feedback actions is discussed.4. Future directions for study of the LHRH pulse generator are suggested.  相似文献   

5.
Many hormones are released in pulsatile patterns. This pattern can be modified, for instance by changing pulse frequency, to encode relevant physiological information. Often other properties of the pulse pattern will also change with frequency. How do signaling pathways of cells targeted by these hormones respond to different input patterns? In this study, we examine how a given dose of hormone can induce different outputs from the target system, depending on how this dose is distributed in time. We use simple mathematical models of feedforward signaling motifs to understand how the properties of the target system give rise to preferences in input pulse pattern. We frame these problems in terms of frequency responses to pulsatile inputs, where the amplitude or duration of the pulses is varied along with frequency to conserve input dose. We find that the form of the nonlinearity in the steady state input-output function of the system predicts the optimal input pattern. It does so by selecting an optimal input signal amplitude. Our results predict the behavior of common signaling motifs such as receptor binding with dimerization, and protein phosphorylation. The findings have implications for experiments aimed at studying the frequency response to pulsatile inputs, as well as for understanding how pulsatile patterns drive biological responses via feedforward signaling pathways.  相似文献   

6.
The Hormonal Regulation of Flower Development   总被引:1,自引:0,他引:1  
Homeotic genes comprising the ABCE classes partly detail the genetic networks that control aspects of floral organ initiation, development, and architecture, but less is known about how these gene functions are translated into changes at the cellular level in growth and cellular differentiation that are involved in the formation of diverse floral organs with specific shapes and sizes. Hormones are the principal transducers of genetic information, and due to recent advances in understanding hormone function in floral development, it is timely to review some of these findings. Flower development is the result of a regulated balance between meristem size and coordination and organ initiation. Floral meristem size is regulated by cytokinin, gibberellin, and auxin, and auxin plays a major role in organ initiation and organogenesis. How hormones contribute to the development of each organ is partly known, with stamen development reliant on almost all hormones, petal development is affected by gibberellins, auxin, and jasmonic acid, and gynoecium development is predominantly regulated by auxin. Furthermore, the interconnections between genetic hierarchies and hormones are being elucidated, and as almost all hormone groups are implicated in floral development, points of hormone crosstalk are being revealed.  相似文献   

7.
Summary .  Many hormones are secreted in pulses. The pulsatile relationship between hormones regulates many biological processes. To understand endocrine system regulation, time series of hormone concentrations are collected. The goal is to characterize pulsatile patterns and associations between hormones. Currently each hormone on each subject is fitted univariately. This leads to estimates of the number of pulses and estimates of the amount of hormone secreted; however, when the signal-to-noise ratio is small, pulse detection and parameter estimation remains difficult with existing approaches. In this article, we present a bivariate deconvolution model of pulsatile hormone data focusing on incorporating pulsatile associations. Through simulation, we exhibit that using the underlying pulsatile association between two hormones improves the estimation of the number of pulses and the other parameters defining each hormone. We develop the one-to-one, driver–response case and show how birth–death Markov chain Monte Carlo can be used for estimation. We exhibit these features through a simulation study and apply the method to luteinizing and follicle stimulating hormones.  相似文献   

8.
9.
10.
IGF-1 in the brain as a regulator of reproductive neuroendocrine function   总被引:4,自引:0,他引:4  
Given the close relationship among neuroendocrine systems, it is likely that there may be common signals that coordinate the acquisition of adult reproductive function with other homeostatic processes. In this review, we focus on central nervous system insulin-like growth factor-1 (IGF-1) as a signal controlling reproductive function, with possible links to somatic growth, particularly during puberty. In vertebrates, the appropriate neurosecretion of the decapeptide gonadotropin-releasing hormone (GnRH) plays a critical role in the progression of puberty. Gonadotropin-releasing hormone is released in pulses from neuroterminals in the median eminence (ME), and each GnRH pulse triggers the production of the gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). These pituitary hormones in turn stimulate the synthesis and release of sex steroids by the gonads. Any factor that affects GnRH or gonadotropin pulsatility is important for puberty and reproductive function and, among these factors, the neurotrophic factor IGF-1 is a strong candidate. Although IGF-1 is most commonly studied as the tertiary peripheral hormone in the somatotropic axis via its synthesis in the liver, IGF-1 is also synthesized in the brain, within neurons and glia. In neuroendocrine brain regions, central IGF-1 plays roles in the regulation of neuroendocrine functions, including direct actions on GnRH neurons. Moreover, GnRH neurons themselves co-express IGF-1 and the IGF-1 receptor, and this expression is developmentally regulated. Here, we examine the role of IGF-1 acting in the hypothalamus as a critical link between reproductive and other neuroendocrine functions.  相似文献   

11.
The control of reproductive function is manifested centrally through the control of hypothalamic release of gonadotropin-releasing hormone (GnRH) in episodic events or pulses. For GnRH release to occur in pulses, GnRH neurons must coordinate release events periodically to elicit a bolus of GnRH. We used a perifusion culture system to examine the release of GnRH from both intact hypothalami and enzymatically dispersed hypothalamic cells after challenge with GnRH analogs to evaluate the role of anatomical neuronal connections on autocrine/paracrine signals by GnRH on GnRH neurons. The potent GnRH agonist des-Gly(10)-D-Ala(6)-GnRH N-ethylamide, potent GnRH antagonists D-Phe(2)-D-Ala(6)-GnRH and D-Phe(2,6)-Pro(3)-GnRH or vehicle were infused, whereas GnRH release from hypothalamic tissue and cells were measured. PULSAR analysis of GnRH release profiles was conducted to evaluate parameters of pulsatile GnRH release. Infusion of the GnRH agonist resulted in a decrease in mean GnRH (P < 0.001), pulse nadir (P < 0.01), and pulse frequency (P < 0.05) but no effect on pulse amplitude. Infusion of GnRH antagonists resulted in an increase in mean GnRH (P < 0.001), pulse nadir (P < 0.05), and pulse frequency (P < 0.05) and in GnRH pulse amplitude only in dispersed cells (P < 0.05). These results are consistent with the hypothesis that GnRH inhibits endogenous GnRH release by an ultrashort-loop feedback mechanism and that treatment of hypothalamic tissue or cells with GnRH agonist inhibits ultrashort-loop feedback, whereas treatment with antagonists disrupts normal feedback to GnRH neurons and elicits an increased GnRH signal.  相似文献   

12.
How can we best discover the ultimate, evolved functions of endocrine signals within the field of human behavioral endocrinology? Two related premises will guide my proposed answer. First, hormones typically have multiple, simultaneous effects distributed throughout the brain and body, such that in an abstract sense their prototypical function is the coordination of diverse outcomes. Second, coordinated output effects are often evolved, functional responses to specific eliciting conditions that cause increases or decreases in the relevant hormones. If we accept these premises, then a natural way to study hormones is to hypothesize and test how multiple eliciting conditions are mapped into coordinated output effects via hormonal signals. I will call these input–output mappings “theoretical frameworks.” As examples, partial theoretical frameworks for gonadal hormones will be proposed, focusing on the signaling roles of testosterone in men and on estradiol and progesterone in women. Recent research on oxytocin in humans will also be considered as an example in which application of the theoretical framework approach could be especially helpful in making functional sense of the diverse array of findings associated with this hormone. The theoretical framework approach is not especially common in the current literature, with many theories having eschewed explicit consideration of input–output mappings in favor of parsimony-based arguments that attempt to find the one main thing that a hormone does with respect to psychology or behavior. I will argue that these parsimony-based models have many shortcomings, and conclude that the construction and testing of theoretical frameworks provides a better means of discovering the evolved functions of human endocrine signals.  相似文献   

13.
14.
激素对植物细胞悬浮培养代谢产物的影响研究进展   总被引:3,自引:0,他引:3  
激素是调节植物细胞生长发育和代谢产物形成的主要物质。综述了在植物细胞悬浮培养中,激素对细胞生物量和代谢产物含量的影响的研究进展。内容包括外源激素的种类、浓度、配比对悬浮培养细胞生物量和代谢产物含量的影响,内源激素检测技术的发展历程、内源激素的含量变化及其对悬浮培养细胞生物量和代谢产物含量的影响,内源激素和外源激素对植物细胞悬浮培养影响的相互作用关系以及新品种激素影响作用的相关研究。  相似文献   

15.
Plants synthesize a chemically diverse range of hormones that regulate growth, development, and responses to environmental stresses. The major classes of plant hormones are specialized metabolites with exquisitely tailored perception and signaling systems, but equally important are the enzymes that control the dose and exposure to the bioactive forms of these molecules. Here, we review new insights into the role of enzyme families, including the SABATH methyltransferases, the methylesterases, the GH3 acyl acid-amido synthetases, and the hormone peptidyl hydrolases, in controlling the biosynthesis and modifications of plant hormones and how these enzymes contribute to the network of chemical signals responsible for plant growth, development, and environmental adaptation.  相似文献   

16.
Hormonal control of shoot branching   总被引:13,自引:1,他引:12  
Shoot branching is the process by which axillary buds, located on the axil of a leaf, develop and form new flowers or branches. The process by which a dormant bud activates and becomes an actively growing branch is complex and very finely tuned. Bud outgrowth is regulated by the interaction of environmental signals and endogenous ones, such as plant hormones. Thus these interacting factors have a major effect on shoot system architecture. Hormones known to have a major influence are auxin, cytokinin, and a novel, as yet chemically undefined, hormone. Auxin is actively transported basipetally in the shoot and inhibits bud outgrowth. By contrast, cytokinins travel acropetally and promote bud outgrowth. The novel hormone also moves acropetally but it inhibits bud outgrowth. The aim of this review is to integrate what is known about the hormonal control of shoot branching in Arabidopsis, focusing on these three hormones and their interactions.  相似文献   

17.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

18.
19.
20.
Stimulation of follicular growth during superovulation is achieved by the injection of FSH or compounds with high FSH-bioactivities. However, some LH-activity is required for follicle maturation. It is of relevance to evaluate, therefore, the effect of superovulatory treatments on endogenous LH secretion. Luteinizing hormone is secreted in discrete pulses, and the pattern of pulsatile LH secretion during superovulation is reviewed. Four of five published studies have shown that LH pulse frequency is significantly reduced by injection of eCG or FSH preparations. This suppression appears within 8 h of treatment Effects of superovulation on LH pulse amplitude are less consistent. The reasons for the decrease in pulse frequency have been investigated, and although the answer is not definitive, it would seem that increased follicular estradiol, acting perhaps in synergism with progesterone, may play a role. Changes in plasma progesterone concentrations are not related to changes in LH pulse frequency. What is the significance of decreased LH pulse frequency? We attempted to investigate this by inducing LH pulses during superovulation, but the result was a major reduction in ovulation rate. More research is required to determine if modification of endogenous LH secretion can improve superovulatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号