首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery of the arsenic hyperaccumulator, Pteris vittata (Chinese brake fern), has contributed to the promotion of its application as a means of phytoremediation for arsenic removal from contaminated soils and water. Understanding the mechanisms involved in arsenic tolerance and accumulation of this plant provides valuable tools to improve the phytoremediation efficiency. In this review, the current knowledge about the physiological and molecular mechanisms of arsenic tolerance and accumulation in P. vittata is summarized, and an attempt has been made to clarify some of the unresolved questions related to these mechanisms. In addition, the capacity of P. vittata for remediation of arsenic-contaminated soils is evaluated under field conditions for the first time, and possible solutions to improve the remediation capacity of Pteris vittata are also discussed.  相似文献   

2.
High-arsenic groundwater in inland basins usually contains high concentrations of fluoride. In the present study, the effects of fluoride on arsenic uptake by Pteris vittata and on arsenic transformation in growth media were investigated under greenhouse conditions. After P. vittata was hydroponically exposed to 66.8 μM As (V) in the presence of 1.05 mM F? in the form of NaF, KF, or NaF+KF for 10 d, no visible toxicity symptoms were observed, and there were not significant differences in the dry biomass among the four treatments. The results showed that P. vittata tolerated F? concentrations as high as 1.05 mM but did not accumulate fluoride in their own tissues. Arsenic uptake was inhibited in the presence of 1.05 mM F?. However, in hydroponic batches with 60 μM As (III) or 65 μM As (V), it was found that 210.6 and 316.0 μM F? promoted arsenic uptake. As(III) was oxidized to As(V) in the growth media in the presence and absence of plants, and F? had no effect on the rate of As(III) transformation. These experiments demonstrated that P. vittata was a good candidate to remediate arsenic-contaminated groundwater in the presence of fluoride. Our results can be used to develop strategies to remediate As-F-contaminated water using P. vittata.  相似文献   

3.
The role of combined arsenic and antibiotics pollution in the environment has recently gained more attention. In this study, a new approach to eliminate tetracycline antibiotics (TCs) from water, via the fern species Pteris vittata (L.), an arsenic hyperaccumulator, was investigated. The encouraging results showed that more than half of the TCs could be removed from the water solution (with the starting concentration of TCs about 1.0 mg kg?1 respectively) after one day of treatment. No TCs (less than 0.01 mg kg?1) were detected in the solution after five days of treatment. The results showed that Pteris vittata has high ability to eliminate TCs, which makes it suitable for practical application. Further research found that TCs concentrations were very low in both the roots and the pinnae of Pteris vittata, which indicates that accumulation in the fronds is not the main removal mechanism and that degradation in the fronds might be the main cause. Present results provide a feasible method for simultaneous removal of arsenic and TCs from livestock-polluted wastewater. However, more research work should be done before any real-world application is made.  相似文献   

4.
An arsenic hyperaccumulator, Pteris vittata L., is common in nature and could occur either on As-contaminated soils or on uncontaminated soils. However, it is not clear whether phosphate transporter play similar roles in As uptake and translocation in nonmetallicolous and metallicolous populations of P. vittata. Five populations were used to investigate effects of phosphate on arsenate uptake and translocation in the plants growing in 1.2 L 20% modified Hoagland's nutrient solution containing either 100 μM phosphate or no phosphate and 10 μM arsenate for 1, 2, 6, 12, 24 h, respectively. The results showed that the nonmetallicolous populations accumulated apparently more As in their fronds and roots than the metallicolous populations at both P supply levels. Phosphate significantly (P < 0.01) decreased frond and root concentrations of As during short time solution culture. In addition, the effects of phosphate on As translocation in P. vittata varied among different time-points during time-course hydroponics (1–24 h). The present results indicated that the inhibitory effect of phosphate on arsenate uptake was larger in the three nonmetallicolous populations than those in the two metallicolous populations of P. vittata.  相似文献   

5.
To better understand the mechanisms of plant tolerance to high concentration of arsenic, we characterized two antioxidant enzymes, glutathione reductase (GR) and catalase (CAT), in the fronds of Pteris vittata, an arsenic-hyperaccumulating fern, and Pteris ensiformis, an arsenic-sensitive fern. The induction, activation and apparent kinetics of GR and CAT in the plants upon arsenic exposure were investigated. Under arsenic exposure (sodium arsenate), CAT activity in P. vittata was increased by 1.5-fold, but GR activity was unchanged. Further, GR was not inhibited or activated by the arsenic in assays. No significant differences in Km and Vmax values of GR or CAT were observed between the two ferns. However, CAT activity in P. vittata was activated by 200 μM arsenate up to 300% compared to the control. Similar but much smaller increases were observed for P. ensiformis and purified bovine liver catalase (133% and 120%, respectively). This research reports, for the first time, the activation of CAT by arsenic in P. vittata. The increased CAT activities may allow P. vittata to more efficiently mediate arsenic-induced stress by preparing the fern for the impeding production of reactive oxygen species resulting from arsenate reduction to arsenite in the fronds.  相似文献   

6.
T. Luongo  L.Q. Ma 《Plant and Soil》2005,277(1-2):117-126
This research was conducted to understand the mechanisms of arsenic hyperaccumulation in Pteris vittata by comparing the characteristics of arsenic accumulation in Pteris and non-Pteris ferns. Seven Pteris (P.vittata, P. Cretica Rowerii, P. Cretica Parkerii, P. Cretica Albo-lineata, P. Quadriavrita, P. Ensiformis and P. Dentata) and six non-Pteris (Arachnoides simplicor, Didymochlaena truncatula, Dryopteris atrata, Dryopteris erythrosora, Cyrtomium falcatum, and Adiantum hispidulum) ferns were exposed to 0, 1 and 10 mgL−1 arsenic as sodium arsenate for 14-d in hydroponic systems. As a group, the Pteris ferns were more efficient in arsenic accumulation than the non-Pteris ferns, with P. vittata being the most efficient followed by P. cretica. When exposed to 10 mg L−1 As, arsenic concentrations in the fronds and roots of P. vittata were 1748 and 503 mg kg−1. Though not all Pteris ferns were efficient in accumulating arsenic, none of the non-Pteris ferns was an efficient As accumulator (the highest concentration being 452 mg kg−1). The fact that frond arsenic concentrations in the control were highly correlated with those exposed to As (r 2 = 0.76–0.87) may suggest that they may be used as a preliminary tool to screen potential arsenic hyperaccumulators. Our research confirms that the ability of P. vittata to translocate arsenic from the roots to the fronds (73–77% As in the fronds), reduce arsenate to arsenite in the fronds (>50% AsIII in the fronds), and maintain high concentrations of phosphate in the roots (48–53% in the roots) all contributed to its arsenic tolerance and hyperaccumulation.  相似文献   

7.
Pteris vittata, a fern able to hyperaccumulate arsenic (As) in its fronds, has been object of a number of studies aimed to understand the mechanisms involved in As absorption and tolerance. This study has focused on a new mechanism, As leaching, already observed in P. vittata, but not explained, based on the possible involvement of hydathodes, not yet described in this fern; moreover, the results contained in this article will provide information on a more detailed frond anatomy of P. vittata. A combination of light and electron microscopic techniques (transmission electron microscopy and environmental scanning electron microscopy with energy dispersive X-ray) and chemical analyses (inductively coupled plasma atomic emission spectroscopy) was used. The results suggest that in phytoremediation processes under field conditions there could be the need to know the atmospheric conditions before harvesting plants, to avoid the loss of As in the environment.  相似文献   

8.
1. The Chinese brake fern (Pteris vittata L.; Pteridaceae) can accumulate up to 27 000 mg kg?1 dry wt. of arsenic (As) from the soil into its above‐ground biomass. They may use this As to deter invertebrate threats. 2. This study explored how As concentrations [As] in the fern, and in soil associated with the fern, influenced the abundance and composition of various invertebrates. 3. Populations of P. vittata were identified in the field. Soils from the base of the fern and from 3 m away of each plant were collected and pitfall traps were installed. Soil and fern arsenic concentrations ([As]) were measured via inductively coupled plasma mass spectrometry and invertebrates were identified to order and classified by feeding guild. 4. Increased [As] did not affect all feeding guilds and orders equally. For example, individual herbivore abundance did not decrease as [As] increased, but predator abundance did. In many cases, the impact of soil [As] on invertebrates depended on the distance from the fern. Fern [As] also influenced components of the community, but only at 3 m away from the fern. Furthermore, the abundances of many invertebrate groups were higher beneath the fern, where [As] was higher. 5. These results suggest that hyperaccumulated As can impact the invertebrate community, but the defensive benefits of hyperaccumulation are more complex than have been previously described. The authors advocate that future studies examining the potential defensive benefits of hyperaccumulation should do so in a natural setting that incorporates this complexity and invertebrate richness.  相似文献   

9.
Arsenic concentrations in a much larger fraction of U.S. groundwater sources will exceed the maximum contaminant limit when the new 10 microg L(-1) EPA standard for drinking water takes effect in 2006. Thus, it is important to develop remediation technologies that can meet this new standard. Phytoremediation of arsenic-contaminated groundwater is a relatively new idea. In this research, an arsenic-hyperaccumulating fern, commonly known as Chinese Brake fern (Pteris vittata L.), was grown hydroponically to examine its effectiveness in arsenic removal from what is believed to be herbicide-contaminated groundwater. One plant grown in 600 mL of groundwater effectively reduced the arsenic concentration from 46 to less than 10 microg L(-1) in 3 days. Re-used plants continued to take up arsenic from the groundwater, albeit at a slower rate (from 46 to 20 microg L(-1) during the same time). Young fern plants were more efficient in removing arsenic than were older fern plants of similar size. The addition of a supplement of phosphate-free Hoagland nutrition to the groundwater had little effect on arsenic removal, but the addition of phosphate nutrition significantly reduced its arsenic affinity and, thus, inhibited the arsenic removal. This study suggested that Chinese Brake has some potential to remove arsenic from groundwater.  相似文献   

10.
Arsenic hyperaccumulator Pteris vittata L. (Chinese brake fern) grows well in arsenic-contaminated media, with an extraordinary ability to tolerate high levels of arsenic. An expression cloning strategy was employed to identify cDNAs for the genes involved in arsenic resistance in P. vittata. Excised plasmids from the cDNA library of P. vittata fronds were introduced into Escherichia coli XL-1 Blue and plated on medium containing 4 mM of arsenate, a common form of arsenic in the environment. The deduced amino acid sequence of an arsenate-resistant clone, PV4-8, had cDNA highly homologous to plant cytosolic triosephosphate isomerases (cTPI). Cell-free extracts of PV4-8 had 3-fold higher level of triosephosphate isomerase (TPI) specific activities than that found in E. coli XL-1 Blue and had a 42 kD fusion protein immunoreactive to polyclonal antibodies raised against recombinant Solanum chacoense cTPI. The PV4-8 cDNA complemented a TPI-deficient E. coli mutant. PV4-8 expression improved arsenate resistance in E. coli WC3110, a strain deficient in arsenate reductase but not in AW3110 deficient for the whole ars operon. This is consistent with the hypothesis that PV4-8 TPI increased arsenate resistance in E. coli by directly or indirectly functioning as an arsenate reductase. When E. coli tpi gene was expressed in the same vector, bacterial arsenate resistance was not altered, indicating that arsenate tolerance was specific to P. vittata TPI. Paradoxically, P. vittata TPI activity was not more resistant to inhibition by arsenate in vitro than its bacterial counterpart suggesting that arsenate resistance of conventional TPI reaction was not the basis for the cellular arsenate resistance. P. vittata TPI activity was inhibited by incubation with reduced glutathione while bacterial TPI was unaffected. Consistent with cTPI’s role in arsenate reduction, bacterial cells expressing fern TPI had significantly greater per cent of cellular arsenic as arsenite compared to cells expressing E. coli TPI. Excised frond tissue infiltrated with arsenate reduced arsenate significantly more under light than dark. This research highlights a novel role for P. vittata cTPI in arsenate reduction.  相似文献   

11.
A pot experiment was conducted to explore the phytoremediation of a diphenylarsinic acid (DPAA)-spiked soil using Pteris vittata associated with exogenous Phyllobacterium myrsinacearum RC6b. Removal of DPAA from the soil, soil enzyme activities, and the functional diversity of the soil microbial community were evaluated. DPAA concentrations in soil treated with the fern or the bacterium were 35–47% lower than that in the control and were lowest in soil treated with P. vittata and P. myrsinacearum together. The presence of the bacterium added in the soil significantly increased the plant growth and DPAA accumulation. In addition, the activities of dehydrogenase and fluorescein diacetate hydrolysis and the average well-color development values increased by 41–91%, 37–78%, and 35–73%, respectively, in the treatments with P. vittata and/or P. myrsinacearum compared with the control, with the highest increase in the presence of P. vittata and P. myrsinacearum together. Both fern and bacterium alone greatly enhanced the removal of DPAA and the recovery of soil ecological function and these effects were further enhanced by P. vittata and P. myrsinacearum together. Our findings provide a new strategy for remediation of DPAA-contaminated soil by using a hyperaccumulator/microbial inoculant alternative to traditional physicochemical method or biological degradation.  相似文献   

12.
1. The consumption of arsenic is toxic to most biota. However, a noctuid caterpillar was recently reported feeding on a plant known to hyperaccumulate arsenic. 2. The aim of this study was to investigate the effects of arsenic‐rich Pteris vittata L. consumption by Callopistria floridensis G., and measure differences in arsenic concentrations at various stages of development (larval and adult), and associated with exuviae and frass. 3. Callopistria floridensis accumulated extraordinary concentrations of arsenic. The relative accumulation of arsenic was highest in exuviae and larvae. Larvae invariably preferred P. vittata grown on low arsenic soil to P. vittata grown on higher soil arsenic concentrations, and appeared able to selectively forage on lower arsenic concentrations within each treatment. 4. These findings show that C. floridensis is tolerant of arsenic, and successfully develops to adulthood containing elevated concentrations of arsenic. Callopistria floridensis represents the only known terrestrial animal capable of accumulating arsenic, and may have developed novel physiological and behavioural adaptations to regulate the negative effects of arsenic.  相似文献   

13.
Pteris vittata is known as an arsenic hyperaccumulator, but there is little information about its tolerance to cadmium and on its ability to accumulate this heavy metal. Our aim was to analyse the accumulation capacity, oxidative stress and antioxidant response of this fern after cadmium treatments. Cadmium content, main markers of oxidative stress and antioxidant response were detected in leaves of plants grown in hydroponics for both short- (5 days) and long- (15 days) term exposure to 0 (control) 60 and 100 μM CdCl2. In leaves, the concentration of cadmium and oxidative stress were parallel with the increase of cadmium exposure. In the short-term exposure, antioxidant response was sufficient to contrast cadmium phytotoxicity only in 60 μM cadmium-treated plants. In the long-term exposure all treated plants, in spite of the increase in activity of some peroxide-scavenging enzymes, showed a significant increase in oxidative damage. As in the long-term stress markers were comparable in all treated plants, with no clear correlation with hydrogen peroxide content, at least part of cadmium-induced oxidative injury seems not mediated by H2O2. Based on our studies, P. vittata, able to uptake relatively high concentrations of cadmium, is only partially tolerant to this heavy metal.  相似文献   

14.
Tu  Shuxin  Ma  Lena  Luongo  Thomas 《Plant and Soil》2004,258(1):9-19
This study compared the roles of root exudates collected from two fern species, the As hyperaccumulating Chinese Brake fern (Pteris vittata L.) and the As-sensitive Boston fern (Nephrolepis exaltata L.), on As-mobilization of two As minerals (aluminum arsenate and iron arsenate) and a CCA (chromated copper arsenate)-contaminated soil as well as plant As accumulation. Chinese Brake fern exuded 2 times more dissolved organic carbon (DOC) than Boston fern and the difference was more pronounced under As stress. The composition of organic acids in the root exudates for both ferns consisted mainly of phytic acid and oxalic acid. However, Chinese Brake fern produced 0.46 to 1.06 times more phytic acid than Boston fern under As stress, and exuded 3–5 times more oxalic acid than Boston fern in all treatments. Consequently, root exudates from Chinese Brake fern mobilized more As from aluminum arsenate (3–4 times), iron arsenate (4–6 times) and CCA-contaminated soil (6–18 times) than Boston fern. Chinese Brake fern took up more As and translocated more As to the fronds than Boston fern. The molar ratio of P/As in the roots of Chinese Brake fern was greater than in the fronds whereas the reverse was observed in Boston fern. These results suggested that As-mobilization from the soil by the root exudates (enhancing plant uptake), coupled with efficient As translocation to the fronds (keeping a high molar ratio of P/As in the roots), are both important for As hyperaccumulation by Chinese Brake fern.  相似文献   

15.
A field study was conducted to determine the efficiency of Chinese brake fern (Pteris vittata L.), an arsenic hyperaccumulator, on removal of arsenic from soil at an arsenic-contaminated site. Chinese brake ferns were planted on a site previously used to treat wood with chromated copper arsenate (CCA). Arsenic concentrations in surface and profile soil samples were determined for 2000, 2001, and 2002. In both 2001 and 2002, senesced and senescing fronds only, as well as all fronds, were harvested. Frond arsenic concentrations were not significantly different between the three harvests. Compared to senesced fronds, live fronds resulted in the greatest amount of arsenic removal. There were no significant differences in soil arsenic concentrations between 2000, 2001, and 2002, primarily due to the extreme variability in soil arsenic concentrations. However, the mean surface soil arsenic was reduced from 190 to 140 mg kg(-1). Approximately 19.3 g of arsenic were removed from the soil by Chinese brake fern. Therefore, this fern is capable of accumulating arsenic from the CCA -contaminated site and may be competitive, in terms of cost, to conventional remediation systems. However, better agronomic practices are needed to enhance plant growth and arsenic uptake to obtain maximum soil arsenic removal and to minimize remediation time.  相似文献   

16.
Environmental scanning electron microscope (ESEM) fitted with an energy dispersive X-ray microanalyzer (EDX) was used to investigate the surface micromorphology and arsenic (As) micro-distribution in Chinese brake (Pteris vittata L.). It was found that amounts of trichome, which possessed multicellular structure with the average length of 160 μm and with an average diameter of 28 μm, existed in the frond ofP. vittata, and the density of trichome on the pinnate axial surface was higher than that on the petiole. Visible X-ray peak of As was recorded in the epidermal cell and trichome. The relative weight of As in the pinnate trichome, which contained the highest concentration of As among all tissues of the plant, was 2.4 and 3.9 times as much as that in the epidermal and mesophyllous cells, respectively. The As concentrations in the basal and stalk cells of the same trichome were higher than that in its cap cell. This is the first time to report that the trichome ofP. vittata plays an important role in arsenic hyperaccumulation. The finding from the present study implies that much attention should be paid to the role of the trichome in understanding the hyperaccumulation and detoxicity of As in the hyperaccumulator and improving the ability of As accumulation.  相似文献   

17.
The current U.S. Environmental Protection Agency's (USEPA's) risk analysis on the Integrated Risk Information System (IRIS) for arsenic in drinking water is based on an epidemiological study of skin cancer in Taiwan. Assumptions used in the USEPA application of the multistage-Weibull model for risk estimation were varied to assess the effect on predicted risk of skin cancer to the U.S. population at arsenic concentrations of 1 to 50?µg/L in drinking water. Among the assumptions tested, the only notable change in risk estimates was a reduction when the arsenic concentration used as representative for Taiwan villages in the low range (<300?µg/L) was increased to the 75th percentile (245?µg/L) in place of the mean used in the USEPA analysis (170?µg/L), but the representative value for Taiwan villages in the high range (≥600?µg/L) was not increased simultaneously to the 75th percentile. Additionally, a simulation study was conducted using records of arsenic measurements in wells from the same period and region of Taiwan as the original study. The exposure-response curve estimated from 60 villages (60 data points) differed only marginally from the outcome when data were summarized into four data points (as in the USEPA skin cancer analysis). Briefly discussed are differences between the study area of Taiwan and the U.S. in nutritional status and consumption of inorganic arsenic in food that might bias predicted U.S. skin cancer risks.  相似文献   

18.
蜈蚣草砷超富集机制及其在砷污染修复中的应用   总被引:3,自引:0,他引:3  
蕨类植物蜈蚣草能够从土壤中吸收砷,并储存于地上部分羽叶的液泡中。蜈蚣草具有高效的抗氧化系统,以降低砷的毒害;其砷酸还原系统和液泡区隔化是蜈蚣草进行砷解毒和砷超富集的重要机制。本文综述了目前蜈蚣草砷超富集机制研究的主要进展,并对其在修复砷污染环境的应用中进行了讨论。  相似文献   

19.
Role of trichome ofPteris vittata L. in arsenic hyperaccumulation   总被引:2,自引:0,他引:2  
Environmental scanning electron microscope (ESEM) fitted with an energy dispersive X-ray microanalyzer (EDX) was used to investigate the surface micromorphology and arsenic (As) micro-distribution in Chinese brake (Pteris vittata L.). It was found that amounts of trichome, which possessed multicellular structure with the average length of 160 μm and with an average diameter of 28 μm, existed in the frond ofP. vittata, and the density of trichome on the pinnate axial surface was higher than that on the petiole. Visible X-ray peak of As was recorded in the epidermal cell and trichome. The relative weight of As in the pinnate trichome, which contained the highest concentration of As among all tissues of the plant, was 2.4 and 3.9 times as much as that in the epidermal and mesophyllous cells, respectively. The As concentrations in the basal and stalk cells of the same trichome were higher than that in its cap cell. This is the first time to report that the trichome ofP. vittata plays an important role in arsenic hyperaccumulation. The finding from the present study implies that much attention should be paid to the role of the trichome in understanding the hyperaccumulation and detoxicity of As in the hyperaccumulator and improving the ability of As accumulation.  相似文献   

20.
Arsenic hyperaccumulation by Pteris vittata L. (Chinese brake fern) may serve as a defense mechanism against herbivore attack. This study examined the effects of arsenic exposure (0, 5, 15 and 30 mg kg?1) on scale insect (Saissetia neglecta) infestation of P. vittata. Scale insects were counted as a percentage fallen from the plant to the total number of insects after 1 week of As-treatment. The arsenic concentrations in the fronds ranged from 5.40 to 812 mg kg?1. Greater arsenic concentrations resulted in higher percentage of fallen-scale insects (17.2–55.0%). Lower arsenic concentrations (≤5 mg kg?1) showed significantly lower effect on the population compared to 15–30 mg kg?1 (p < 0.05). Arsenic content in the fallen-scale insects was as high as 194 mg kg?1, which indicated that arsenic has been ingested by the scale insects via plant sap. This study is consistent with the hypothesis that arsenic may help P. vittata defend against herbivore's attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号