首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Six commercial carnation cultivars were inoculated with Fusarium oxysporum f. sp. dianthi race 2, and grown under three different temperature regimes. Colonization by the pathogen and development of wilt symptoms were assessed at intervals up to 40 days. No symptoms and very little colonization were seen in any of the cultivars at 14–15°C. At a temperature of 22°C, the cultivars were clearly differentiated into three groups: those with resistance, partial resistance or susceptibility to the pathogen depending on the severity of symptoms and the extent of fungal colonization. Symptom severity was associated with the extent of colonization. This differentiation was not seen at 26°C, when all cultivars except the most resistant, cv.‘Carrier 929′, rapidly became diseased and died by 23 days after inoculation. ‘Carrier 929’ also showed some wilt symptoms at this temperature and was colonized throughout the height of the stem after 40 days. The pathogen caused disease at 26°C by a combination of vascular wilting and stem base and root rotting. Fungal colonization was assayed at 22°C by the dilution plate/homogenization method and by estimation of fungal chitin in a highly resistant (‘Carrier 929′) and in a highly susceptible (‘Red Baron’) cultivar. Both methods of assay gave similar results. In ‘Red Baron’, colonization increased slowly up to 20 days after inoculation then progressed rapidly, closely following the development of severe wilt symptoms. In ‘Carrier 929’, colonization remained very low. The low level of fungal biomass in ‘Carrier 929’ compared with ‘Red Baron’ indicated that the former cultivar showed true resistance as opposed to tolerance to the disease.  相似文献   

2.
Bacterial wilt (BW), caused by Ralstonia solanacearum , is a devastating vascular disease of tomato worldwide. However, information on tomato's defense mechanism against infection by this soil-borne bacterium is limited. In this study, virus-induced gene silencing (VIGS) was employed to decipher signaling pathways involved in the resistance of tomato to this pathogen. Defined sequence fragments derived from a group of genes known or predicted to be involved in ethylene (ET) and salicylic acid (SA) signaling transduction pathways and mitogen-activated protein kinase (MAPK) cascades were subjected to VIGS in 'Hawaii 7996', a tomato cultivar with stable resistance to BW, and their effect on resistance was determined. The results indicated that silencing of ACO1/3, EIN2, ERF3, NPR1, TGA2.2, TGA1a, MKK2, MPK1/2 and MPK3 caused significant increase in bacterial proliferation in stembases and/or mid-stems. Partial wilting symptoms appeared on plants in which TGA2.2, TGA2.1a, MKK2 and MPK1/2 were silenced. These results suggested that ET-, SA- and MAPK-related defense signaling pathways are involved in the resistance of tomato to BW. This is the first report elucidating the multiple layers of defense governing the resistance of tomato to BW. The results are discussed to enlighten an important and complex interaction between tomato and a soil-borne vascular pathogen.  相似文献   

3.
Milling A  Babujee L  Allen C 《PloS one》2011,6(1):e15853
Ralstonia solanacearum, which causes bacterial wilt of diverse plants, produces copious extracellular polysaccharide (EPS), a major virulence factor. The function of EPS in wilt disease is uncertain. Leading hypotheses are that EPS physically obstructs plant water transport, or that EPS cloaks the bacterium from host plant recognition and subsequent defense. Tomato plants infected with R. solanacearum race 3 biovar 2 strain UW551 and tropical strain GMI1000 upregulated genes in both the ethylene (ET) and salicylic acid (SA) defense signal transduction pathways. The horizontally wilt-resistant tomato line Hawaii7996 activated expression of these defense genes faster and to a greater degree in response to R. solanacearum infection than did susceptible cultivar Bonny Best. However, EPS played different roles in resistant and susceptible host responses to R. solanacearum. In susceptible plants the wild-type and eps(-) mutant strains induced generally similar defense responses. But in resistant Hawaii7996 tomato plants, the wild-type pathogens induced significantly greater defense responses than the eps(-) mutants, suggesting that the resistant host recognizes R. solanacearum EPS. Consistent with this idea, purified EPS triggered significant SA pathway defense gene expression in resistant, but not in susceptible, tomato plants. In addition, the eps(-) mutant triggered noticeably less production of defense-associated reactive oxygen species in resistant tomato stems and leaves, despite attaining similar cell densities in planta. Collectively, these data suggest that bacterial wilt-resistant plants can specifically recognize EPS from R. solanacearum.  相似文献   

4.
Resistance against a Ralstonia solanacearum race 3-phylotype II strain JT516 was assessed in a F2:3 and a population of inbred lines (RIL), both derived from a cross between L. esculentum cv. Hawaii 7996 (partially resistant) and L. pimpinellifolium WVa700 (susceptible). Resistance criteria used were the percentage of wilted plants to calculate the AUDPC value, and bacterial colonization scores in roots and stem (hypocotyl and epicotyl) assessed in two independent greenhouse experiments conducted during the cool and hot seasons in Réunion Island, France. Symptoms were more severe during the cool season trials. Heritability estimates in individual seasons ranged from 0.82 to 0.88, depending on resistance criterion. A set of 76 molecular markers was used for quantitative trait loci (QTL) mapping using the single- and composite- interval mapping methods, as well as ANOVA. Four QTLs, named Bwr- followed by a number indicating their map location, were identified. They explained from 3.2 to 29.8% of the phenotypic variation, depending on the resistance criterion and the season. A major QTL, Bwr-6, and a minor one, Bwr-3, were detected in each season for all resistance criteria. Both QTLs showed stronger effects in the hot season than in the cool one. Their role in resistance to R. solanacearum race 3-phylotype II was subsequently confirmed in the RIL population derived from the same cross. Two other QTLs, Bwr-4 and Bwr-8, with intermediate and minor effects, respectively, were only detected in the hot season, demonstrating that environmental factors may strongly influence the expression of resistance against the race 3-phylotype II strain JT516. These QTLs were compared with those detected in the RIL population against race 1-phylotype I strain JT519 as well as those detected in other previous studies in the same genetic background against other race 1-phylotype I and II strains. This comparison revealed the possible occurrence of some phylotype-specific resistance QTLs in Hawaii 7996.  相似文献   

5.
The vascular colonisation of resistant and susceptible hot chilli (Capsicum annuum) cultivars by Ralstonia solanacearum was examined using transmission electron microscopy. Tap roots of artificially-inoculated plants, grown in sterilised soil were investigated to observe the morphological barriers involved in the restriction of bacterial spread. In the resistant cultivar, several responses induced in response to bacterial infection, were observed. First, a cell wall coating material developed together with swelling of the primary wall of the xylem vessels, limiting the bacterial spread. Second, formation of various types of vesicles in the vascular parenchyma cells, which enveloped the bacterial mass and also partly restricted the pathogen spread. Third, induction of hypersensitive reaction in the xylem vessels resulted in the distortion and lysis of the bacteria. In the susceptible cultivar, vascular coating, production of vesicle and induction of hypersensitive reaction were not observed and bacterial spread was not limited. Rapid vascular colonisation of the susceptible cultivar seemed to be generalised which resulted in the rapid wilting of affected plants. Other reactions involved in both resistant and susceptible cultivars include disorganisation of cytoplasm of parenchyma cells, disintegration of nuclei, and rupturing of xylem vessel walls. The restriction of pathogen spread associated with the resistance in C. annuum to bacterial wilt was mainly attributed to some induced, morphological and physical barriers.  相似文献   

6.
7.

Key message

Genotyping of disease resistance to bacterial wilt in tomato by a genome-wide SNP analysis

Abstract

Bacterial wilt caused by Ralstonia pseudosolanacearum is one of the destructive diseases in tomato. The previous studies have identified Bwr-6 (chromosome 6) and Bwr-12 (chromosome 12) loci as the major quantitative trait loci (QTLs) contributing to resistance against bacterial wilt in tomato cultivar ‘Hawaii7996’. However, the genetic identities of two QTLs have not been uncovered yet. In this study, using whole-genome resequencing, we analyzed genome-wide single-nucleotide polymorphisms (SNPs) that can distinguish a resistant group, including seven tomato varieties resistant to bacterial wilt, from a susceptible group, including two susceptible to the same disease. In total, 5259 non-synonymous SNPs were found between the two groups. Among them, only 265 SNPs were located in the coding DNA sequences, and the majority of these SNPs were located on chromosomes 6 and 12. The genes that both carry SNP(s) and are near Bwr-6 and Bwr-12 were selected. In particular, four genes in chromosome 12 encode putative leucine-rich repeat (LRR) receptor-like proteins. SNPs within these four genes were used to develop SNP markers, and each SNP marker was validated by a high-resolution melting method. Consequently, one SNP marker, including a functional SNP in a gene, Solyc12g009690.1, could efficiently distinguish tomato varieties resistant to bacterial wilt from susceptible varieties. These results indicate that Solyc12g009690.1, the gene encoding a putative LRR receptor-like protein, might be tightly linked to Bwr-12, and the SNP marker developed in this study will be useful for selection of tomato cultivars resistant to bacterial wilt.
  相似文献   

8.
The root‐knot nematode Meloidogyne incognita is known to increase the severity of bacterial wilt in many solanaceous crops. In Japan, several bacterial wilt‐resistant rootstocks that have the M. incognita resistance (Mi) gene in their genome have been developed for tomatoes. In this study, we aimed to examine whether the presence of Mi gene‐breaking M. incognita population affects the development of bacterial wilt in bacterial‐wilt‐resistant tomato rootstocks with Mi in their genetic background. We also aimed to examine the possibility of using high‐grafted tomatoes to control bacterial wilt in plants infected by M. incognita. Our results indicate that the resistance to bacterial wilt was easy to break in usual‐grafted tomato plants infected with M. incognita and that M. incognita enhanced the vertical movement of Ralstonia solanacearum in the bacterial‐wilt‐resistant tomato rootstocks. In addition, our results suggest that high grafting led to significantly less wilting in the plants infected by M. incognita than did usual grafting.  相似文献   

9.
Bacterial wilt caused by Curtobacterium flaccumfaciens pv. flaccumfaciens is an important new disease of common bean (Phaseolus vulgaris) in western Canada. Both yellow and orange variants of the pathogen were found in the region. A controlled environment study was conducted to assess 124 common bean cultivars and lines from eight market classes for resistance to the yellow and orange variants of the pathogen, using the hilum injury/seed inoculation method. Results of the screening tests showed significant (P < 0.05) differences in resistance to bacterial wilt among the cultivars or lines. The great northern line L02E317, the great northern cultivar Resolute and pinto lines L02B662 and 999S‐2A, were highly resistant to both variants of the pathogen, with disease severity indices of 0 on a rating scale of 0 (no wilt symptoms) to 5 (dead seedling). Resistant cultivars or lines were found among black, great northern, pink, pinto, small red and Flor de Mayo bean market classes. The study concludes that new bacterial wilt‐resistant germplasm exists among Canadian bean cultivars and lines, and constitutes a valuable resource for breeding common beans for resistance to both yellow and orange variants of C. flaccumfaciens pv. flaccumfaciens.  相似文献   

10.
The plant pathogen Ralstonia solanacearum uses plant resources to intensely proliferate in xylem vessels and provoke plant wilting. We combined automatic phenotyping and tissue/xylem quantitative metabolomics of infected tomato plants to decipher the dynamics of bacterial wilt. Daily acquisition of physiological parameters such as transpiration and growth were performed. Measurements allowed us to identify a tipping point in bacterial wilt dynamics. At this tipping point, the reached bacterial density brutally disrupts plant physiology and rapidly induces its death. We compared the metabolic and physiological signatures of the infection with drought stress, and found that similar changes occur. Quantitative dynamics of xylem content enabled us to identify glutamine (and asparagine) as primary resources R. solanacearum consumed during its colonization phase. An abundant production of putrescine was also observed during the infection process and was strongly correlated with in planta bacterial growth. Dynamic profiling of xylem metabolites confirmed that glutamine is the favoured substrate of R. solanacearum. On the other hand, a triple mutant strain unable to metabolize glucose, sucrose and fructose appears to be only weakly reduced for in planta growth and pathogenicity.  相似文献   

11.
12.
肖健  黄小丹  杨尚东  屈达才 《广西植物》2022,42(12):2099-2108
为研究青枯病易感和钝感桑树品种植株根际土壤真菌群落组成,该研究以ITS1F和ITS2R为引物,基于高通量测序技术对桑树青枯病易感品种(台湾长果桑,SM)和桑树青枯病钝感品种(桂桑12号,IM)植株根际土壤真菌群落结构进行分析。结果表明:(1)两个品种间指示真菌丰富度的ACE、Chao1指数及表征多样性的Shannon指数无显著差异,门分类水平,被孢霉门(Mortierellomycota)和球囊菌门(Glomeromycota)是青枯病钝感桑树品种植株根际土壤中特有的优势真菌门; 而属分类水平,Apiotrichum、地丝菌属(Geotrichum)、足放线病菌属(Scedosporium)和腐质霉属(Humicola)等是青枯病易感桑树品种植株根际土壤中富集的特有优势真菌属。(2)青枯病易感桑树品种植株根际土壤中,缺失了被孢霉门、球囊菌门真菌,以及被孢霉属(Mortierella)、镰刀菌属(Fusarium)、曲霉菌属(Aspergillus)和毛壳菌属(Chaetomium)等具有生防功能的优势真菌门属,可能是其易感青枯病的重要原因。(3)根据真菌群落对同类环境资源的利用途径进行功能预测发现,青枯病易感桑树品种根际土壤中,富集了相对较多的病理营养型和腐生营养型真菌; 而青枯病钝感桑树品种根际土壤中,富集了相对丰富的共生营养型真菌。(4)特有真菌数量更为丰富的土壤真菌OTU分类水平,可能是青枯病钝感桑树品种田间表现出更强抗性的重要原因。可见,在青枯病钝感桑树品种植株根际土壤中,富集的被孢霉属、镰刀菌属、曲霉菌属和毛壳菌属等优势特异真菌属,具有作为拮抗桑树青枯病备选菌属的潜力。  相似文献   

13.
Indoor studies were conducted to determine the potential use of Pantoea agglomerans isolate LRC 8311 as a biocontrol agent for control of bacterial wilt of bean caused by Curtobacterium flaccumfaciens pv. flaccumfaciens. Soaking seeds of great northern bean cv. US1140 in a suspension of 3 × 108 cfu/ml P. agglomerans resulted in thorough endophytic colonization of the entire bean seedling from root to apical stem after 7 days, regardless of whether the inoculated seeds were hilum injured or not. Colonization of seedlings by P. agglomerans increased seedling height after 10 days, and had no negative effect on seedling emergence. Treatment of hilum‐injured bean seeds of great northern bean cv. US1140 or navy bean cv. Morden003 with a mixture of P. agglomerans + C. flaccumfaciens pv. flaccumfaciens resulted in a high rate of colonization of seedlings by P. agglomerans, reduced frequency of infection by C. flaccumfaciens pv. flaccumfaciens, improved seedling emergence and height, and reduced disease severity, compared with seeds treated with the wilt pathogen alone. Application of P. agglomerans as a soil drench 24 h after planting was also effective in suppressing bacterial wilt in some instances, but was generally not as effective as seed treatment. The study suggests that seed treatment with P. agglomerans may be an effective and practical method for control of bacterial wilt of bean.  相似文献   

14.
Fusarium wilt (FW) disease is an economically important disease of cotton worldwide and a major cause of crop losses in Australia and many other cotton-producing countries. Symptoms include wilting, vascular browning and death. Australian races of the causal agent Fusarium oxysporum f. sp. vasinfectum (Fov) are genetically distinct from those in other countries and are thought to have evolved from indigenous races. New sources of resistance for breeding are rare, as cotton cultivars with significant FW resistance against Fov isolates from other cotton-producing regions are usually susceptible to Australian Fov races. MCU-5, an Upland Indian cotton cultivar, has been identified as having improved resistance to Australian Fov and is being used to breed new commercial cultivars with higher resistance to FW. To investigate the genetic basis of the FW resistance in MCU-5, QTL analysis was performed on 244 F3 and 244 F4 families derived from an intraspecific cross between MCU-5 and Siokra 1-4, a cultivar highly sensitive to Australian Fov races. Resistance, as measured by leaf symptoms, vascular browning and survival, showed low to moderate heritability between generations. MCU-5 resistance to FW was found to be complex with three quantitative trait loci (QTL) identified in the F3, and eight in the F4, that explained between 9 and 41% of the phenotypic variation. The QTL were located on four linkage groups including chromosomes A6 (Chr 6), D4 (Chr 22) and D6 (Chr 25), with two QTL located in similar regions to previously identified FW resistance from the Sea Island cultivar Pima 3-79. The QTL identified in this study represent the first targets for marker-assisted selection of FW resistance in Australia.  相似文献   

15.
Native strains ofPseudomonas fluorescens exhibitedin vitro antibiosis towards isolates of races 1 and 4 ofFusarium oxysporum f.sp.cubense, the Panama wilt pathogen of banana. The seedlings ofMusa balbisiana seedlings treated withP. fluorescens showed less severe wilting and internal discolouration due toF. oxysporum f.sp.cubense infection in greenhouse experiments. In addition to suppressing Panama wilt, bacterized seedlings ofM. balbisiana also showed better root growth and enhanced plant height.  相似文献   

16.
番茄抗青枯病基因的AFLP分子标记   总被引:12,自引:0,他引:12  
寿森炎  冯壮志  苗立祥  廖芳滨 《遗传》2006,28(2):195-199
用番茄高抗青枯病品种“T51A”与高感青枯病品种“T9230”配制杂交组合,接种鉴定其正反交F1代及F2代分离群体的青枯病发生情况。结果表明,T51A对青枯病的抗性属于细胞质遗传,受1对杂合基因加性控制。用64个EcoRI/seI引物组合对“T51A”、“T9230”两个亲本及其F2代抗病和感病基因池进行AFLP分析,共扩增出约4200条可分辨的带,其中2条为稳定的差异。用“T51A”和“T9230”杂交产生的F2代分离群体对2个特异条带与目的基因的遗传连锁性进行分析,发现特异条带AAG/CAT与暂定名为RRS-342的抗青枯病基因紧密连锁,二者之间的遗传距离为6.7 cM。将AAG/CAT片段回收、克隆和测序,成功地将其转化为SCAR标记,可以更加方便地用于对番茄青枯病基因的标记辅助选择。   相似文献   

17.
Interactions between watermelon and a green fluorescent protein (GFP)‐tagged isolate of Fusarium oxysporum f.sp. niveum race 1 (Fon‐1) were studied to determine the differences in infection and colonization of watermelon roots in cultivars resistant to and susceptible to Fusarium wilt. The roots of watermelon seedlings were inoculated with a conidial suspension of the GFP‐tagged isolate, and confocal laser scanning microscopy was used to visualize colonization, infection and disease development. The initial infection stages were similar in both the resistant and susceptible cultivars, but the resistant cultivar responded differentially after the pathogen had penetrated the root. The pathogen penetrated and colonized resistant watermelon roots, but further fungal advance appeared to be halted, and the fungus did not enter the taproot, suggesting that resistance is initiated postpenetration. However, the tertiary and secondary lateral roots of resistant watermelon also were colonized, although not as extensively as susceptible roots, and the hyphae had penetrated into the central cylinder of lateral roots forming a dense hyphal mat, which was followed by a subsequent collapse of the lateral roots. The initial infection zone for both the wilt‐susceptible and wilt‐resistant watermelon roots appeared to be the epidermal cells within the root hair zone, which the fungus penetrated directly after forming appressoria. Areas where secondary roots emerged and wounded root tissue also were penetrated preferentially.  相似文献   

18.
Fusarium wilt (FW) is one of the most economically damaging cotton diseases worldwide, causing yellowing, wilting, defoliation, vascular tissue damage and ultimately death. Identification of molecular markers linked to FW genes is vital to incorporate resistance into elite cotton cultivars. An intraspecific F2 in Gossypium hirsutum L. was developed by crossing with a highly resistant cultivar Zhongmiansuo 35 (ZMS35) and a susceptible cultivar Junmian 1 to screen simple sequence repeats (SSRs) closely linked to the FW resistance gene. FW was identified in F2:3 families by evaluating seedling leaf symptoms and vascular tissue damage at plant maturity under natural field infection conditions over 2 years. The results showed that FW resistance segregated in a 3:1 ratio as a simple monogenic trait in F2:3 families. Molecular mapping identified a FW resistance gene closely linked with the SSR marker JESPR304−280 in chromosome D3(c17). We proposed to name this gene FW R . A composite interval mapping method detected four QTLs for FW resistance in Chr.A7(c7), D1(c15), D9(c23) and D3, respectively. Among them, one major QTL (LOD > 20) was tagged near marker JESPR304 within an interval of 0.06–0.2 cM, and explained over 52.5–60.9% of the total phenotypic variance. The data confirmed the existence of a major gene in Chr.D3. This is the first report of molecular mapping of a major gene contributing FW resistance in cotton. The present research therefore provides an opportunity to understand the genetic control of resistance to FW and conduct molecular marker-assisted selection breeding to develop FW resistant cultivars.  相似文献   

19.
Selected isolates of Pseudomonas fluorescens (Pf1-94, Pf4-92, Pf12-94, Pf151-94 and Pf179-94) and chemical resistance inducers (salicylic acid, acetylsalicylic acid, DL-norvaline, indole-3-carbinol and lichenan) were examined for growth promotion and induced systemic resistance against Fusarium wilt of chickpea. A marked increase in shoot and root length was observed in P. fluorescens treated plants. The isolates of P. fluorescens systemically induced resistance against Fusarium wilt of chickpea caused by Fusarium. oxysporum f.sp. ciceri (FocRs1), and significantly (P = 0.05) reduced the wilt disease by 26-50% as compared to control. Varied degree of protection against Fusarium wilt was recorded with chemical inducers. The reduction in disease was more pronounced when chemical inducers were applied with P. fluorescens. Among chemical inducers, SA showed the highest protection of chickpea seedlings against wilting. Fifty two- to 64% reduction of wilting was observed in soil treated with isolate Pf4-92 along with chemical inducers. A significant (P = 0.05; r = -0.946) negative correlation was observed in concentration of salicylic acid and mycelial growth of FocRs1 and at a concentration of 2000 microg ml(-1) mycelial growth was completely arrested. Exogenously supplied SA also stimulated systemic resistance against wilt and reduced the disease severity by 23% and 43% in the plants treated with 40 and 80 microg ml(-1) of SA through root application. All the isolates of P. fluorescens produced SA in synthetic medium and in root tissues. HPLC analysis indicated that Pf4-92 produced comparatively more SA than the other isolates. 1700 to 2000 nanog SA g(-1) fresh root was detected from the application site of root after one day of bacterization whereas, the amount of SA at distant site ranged between 400-500 nanog. After three days of bacterization the SA level decreased and was found more or less equal at both the detection sites.  相似文献   

20.
Development of effective disease-resistance to a broad-range of pathogens in crops usually requires tremendous resources and effort when traditional breeding approaches are taken. Genetic engineering of disease-resistance in crops has become popular and valuable in terms of cost and efficacy. Due to long-lasting and broad-spectrum of effectiveness against pathogens, employment of systemic acquired resistance (SAR) for the genetic engineering of crop disease-resistance is of particular interest. In this report, we explored the potential of using SAR-related genes for the genetic engineering of enhanced resistance to multiple diseases in tomato. The Arabidopsis NPR1 (nonexpresser of PR genes) gene was introduced into a tomato cultivar, which possesses heat-tolerance and resistance to tomato mosaic virus (ToMV). The transgenic lines expressing NPR1 were normal as regards overall morphology and horticultural traits for at least four generations. Disease screens against eight important tropical diseases revealed that, in addition to the innate ToMV-resistance, the tested transgenic lines conferred significant level of enhanced resistance to bacterial wilt (BW) and Fusarium wilt (FW), and moderate degree of enhanced resistance to gray leaf spot (GLS) and bacterial spot (BS). Transgenic lines that accumulated higher levels of NPR1 proteins exhibited higher levels and a broader spectrum of enhanced resistance to the diseases, and enhanced disease-resistance was stably inherited. The spectrum and degree of these NPR1-transgenic lines are more significant compared to that of transgenic tomatoes reported to date. These transgenic lines may be further explored as future tomato stocks, aiming at building up resistance to a broader spectrum of diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号