首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anti-neutrophil mAb PMN 7C3 and IIC4 inhibited the respiratory burst of neutrophils as measured by the generation of superoxide anion or hydrogen peroxide in response to PMA, serum-treated zymosan, and FMLP. To examine the effect of these mAb on neutrophil transmembrane potential, a fluorescent probe was used in a continuous assay. Compared with control cells, antibody-treated neutrophils were partially depolarized at rest and had a blunted response when stimulated. The F(ab)2 fragment of PMN 7C3 had similar effects on both the respiratory burst and transmembrane potential, whereas the Fab fragment did not. The unrelated antineutrophil mAb 31D8 had no effect on either the respiratory burst or on transmembrane potential. Neutrophils suspended in high potassium buffers also exhibited partial depolarization of the resting cell membrane and a blunted depolarization response to stimuli and produced less superoxide anion and hydrogen peroxide in response to stimuli than did control cells in physiologic buffer. Exposure of neutrophils to 2-deoxy-D-glucose resulted in dose- and time-dependent depression of the respiratory burst. 2-Deoxy-D-glucose also caused depolarization of the resting membrane and impaired subsequent stimulus-induced depolarization. Similar effects were seen with addition of iodoacetamide or depletion of glucose. The parallel effects of anti-neutrophil mAb, depolarizing buffers, and glycolytic inhibitors on both neutrophil membrane depolarization and activation of the respiratory burst indicate a close association between these two events. The evidence suggests that the inhibitory effects of these antibodies are mediated through partial membrane depolarization which interferes with signal transduction on subsequent stimulation of the cells. The impairment in oxidative responses to phorbol esters as well as to receptor-dependent activating agents points to interruption at a distal step, e.g., subsequent to Ca2+ mobilization.  相似文献   

2.
Linoleic acid hydroperoxide (LOOH) is a naturally occurring product of lipid peroxidation. Incubation of rat alveolar macrophages with LOOH produced alterations of membrane properties and function at concentrations of LOOH as low as 0.1 microM. These included phorbol myristate acetate (PMA)-stimulated superoxide production, mitochondrial membrane potential, and plasma membrane potentials. These effects were clearly separated from gross loss of structural integrity as measured by lactate dehydrogenase release, in terms of both time of incubation and concentration of LOOH. PMA-stimulated superoxide production measured 15 min after addition of 10 microM LOOH was inhibited approximately 50%; however, addition of this concentration of the hydroperoxide after PMA stimulation was without effect. Superoxide production was also measured in a cell-free system produced by incubation of alveolar macrophages with sodium dodecyl sulfate. Prior incubation of alveolar macrophages with LOOH, H2O2, or t-butyl hydroperoxide, under conditions that significantly inhibited superoxide production by the intact cells, did not produce inhibition of the NADPH-dependent superoxide generating system in the cell-free preparation. These results suggest that the effect of LOOH was upon signal transduction involved in the stimulation of superoxide production rather than on the NADPH oxidase itself. Measurements of membrane potential changes were made using the lipophilic ions, 3,3'-dipentyloxacarbocyanine (DiOC5(3] and bis(3-phenyl-5-oxoisoxazol-4-yl)pentamethineoxonol (oxonol V). On the basis of their charge, DiOC5(3) fluorescence primarily reports mitochondrial potential and oxonol V absorbance reports plasma membrane potential. With 10 microM LOOH, depolarization of the plasma and mitochondrial membranes appeared to occur within seconds. As prior depolarization depresses superoxide production, these hydroperoxide-induced changes in membrane potential may be responsible for decreased PMA-stimulated superoxide production.  相似文献   

3.
The U937 human monocytic cell line was studied to determine its ability to generate a respiratory burst after stimulation with phorbol myristate acetate (PMA) or opsonized zymosan. U937 cells cultured in normal medium produced virtually no superoxide anion or chemiluminescence in response to either stimulus. In contrast, U937 cells cultured in medium containing soluble factors from activated lymphocytes produced significant O2- and chemiluminescence when stimulated with PMA or opsonized zymosan. The chemiluminescence in response to PMA was maximal in U937 cells precultured with these soluble factors for 3 days, whereas maximal responsiveness to opsonized zymosan was not observed until 5 to 6 days of lymphokine exposure. Although this ability to generate a respiratory burst persisted for a number of days in U937 cells that were subsequently recultured in normal medium, this responsiveness was gradually lost in the continued absence of these factors. The data indicate that the U937 monocytic cell line can be activated or induced to differentiate by soluble factors released by activated lymphocytes. In the process, these cells acquire the ability to generate a respiratory burst. The U937 cell line may serve as a useful model for the study of the ontogeny and regulation of the respiratory burst during human monocytic differentiation.  相似文献   

4.
In an attempt to understand better the molecular basis for the enhanced respiratory burst of activated macrophages (M phi), we investigated the relationship between stimulus-induced changes in membrane potential and release of superoxide anion (O2-) in mouse peritoneal M phi. Resident M phi and M phi elicited by injection of lipopolysaccharide (LPS-M phi) or obtained from animals infected with bacille Calmette-Guérin (BCG-M phi) were used. LPS-M phi and BCG-M phi showed more pronounced changes in membrane potential (depolarization) and greater release of O2- on contact with phorbol myristate acetate (PMA) than did resident macrophages. The lag time between addition of stimulus and onset of release of O2- was reduced in activated compared with resident cells. Membrane potential changes began 60 to 90 sec before release of O2- could be detected in each cell type. The dose-response curves for triggering of membrane potential changes and O2- release by PMA were identical. The magnitude of membrane potential changes and of O2- release in LPS-M phi and BCG-M phi declined progressively during in vitro culture, and values on day 3 approached those in resident macrophages ("deactivation"). Extracellular glucose was required for effective stimulated change in membrane potential and O2- release. These findings indicate that membrane potential changes are closely associated with O2- -releasing capacity in macrophages, and that the systems that mediate membrane potential changes and production of O2- develop or decline concomitantly during activation or deactivation of the cells. Although the plasma membrane was highly depolarized by high extracellular K+ or by the sodium ionophore gramicidin, O2- release was not induced by these maneuvers, indicating that changes in membrane potential by themselves are not sufficient to trigger the respiratory burst in macrophages. Release of O2- was not impaired in buffers in which Na+ was completely replaced with equimolar concentrations of K+ or choline+; thus, induction or maintenance of the respiratory burst in M phi does not require an influx of Na+.  相似文献   

5.
ABSTRACT Nitrite production by rat alveolar macrophages was studied to determine the role of L-arginine oxidation in the interaction between these cells and Pneumocystis carinii. Alveolar macrophages from rats obtained from two different breeders were used: rats from Janvier breeder had latent P. carinii infection, while those from Charles River breeder were bred in a germ-free environment. Pneumocystis carinii increased in vitro nitrite generation by unstimulated alveolar macrophages from Janvier rats only, and this was blocked by NG-monomethyl-L-arginine. Incubation of cells from Janvier and Charles River rats with lipopolysaccharide and/or interferon-gamma increased nitrite production to a similar extent. Pneumocystis carinii partially decreased nitrite release by activated alveolar macrophages, and this was still inhibited by NG-monomethyl-L-arginine. In the presence of P. carinii, superoxide dismutase used as a superoxide anion scavenger had no effect on nitrite production by activated cells. These results show that prior exposure to P. carinii leads to nitric oxide production by rat alveolar macrophages. Although the magnitude of this production seems to be moderate, it is of biological significance since cells of P. curinii-naive rats do not generate nitrite whereas those of latently infected rats do.  相似文献   

6.
Treatment of human granulocytes with concanavalin A, phorbol myristate acetate (PMA), N-formyl-methionyl-leucyl-phenylalanine (FMLP), and A23187 (a calcium ionophore) stimulates the release of superoxide anion and the generation of chemiluminescence. The fluorescent probe, Di-S-C3(5), has been used to monitor shifts in membrane potential in response to these stimulants which precede the secretion of superoxide. Concanavalin A, PMA, and FMLP induce a biphasic shift in transmembrane potential (Em), i.e., a rapid depolarization followed by a prolonged hyperpolarization. This depolarization is dependent on both external sodium and calcium while the hyperpolarization is inhibited by ouabain which blocks the electrogenic Na-K pump. In contrast, A23187 induces a rapid and prolonged depolarization. This monophasic shift in Em is dependent on external calcium. These results suggest that depolarization acts as a signal to initiate events associated with the “respiratory burst” of these phagocytes.  相似文献   

7.
When human granulocytes that have been primed with recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSFrh) are activated by ligands that stimulate the respiratory burst, the amount of superoxide anion (O2-) they generate is significantly increased. We have found that the accelerated rate of O2- release occurring under these conditions is accompanied by an antecedent increase in membrane depolarization. We examined the nature of the enhancement of membrane depolarization in GM-CSFrh-primed granulocytes and investigated its relationship to the increase in O2- generation by N-formyl methionylleucylphenylalanine (fMLP)-activated granulocytes. We found that augmented depolarization could not be accounted for by a change in the resting membrane potential induced by the growth factor and was still present after either blocking passive transmembrane Na+ movement with dimethylamiloride or by increasing the membrane's permeability to K+ with valinomycin. When their ability to depolarize was virtually eliminated by dissipating the transmembrane K+ gradient, GM-CSFrh-pretreated cells continued to generate more O2- after fMLP than did control cells. These results indicate that augmentation of the granulocyte's ability to generate O2- anions, which is induced by priming with GM-CSFrh, is independent both of the resting transmembrane potential and of alterations in the extent of membrane potential change induced by stimuli such as fMLP.  相似文献   

8.
We found that rat bone marrow-derived macrophages responded to opsonized zymosan by releasing superoxide anion. However, these cells were defective in the response to the potent oxidative burst activator phorbol myristate acetate (PMA). This result was observed whatever the concentration of agonist used and with different concentrations of cells. Since it is strongly suspected that protein kinase C (PKC) is involved in the transductional pathway induced by PMA in numerous cell types, and particularly in phagocytes, we studied PKC and we observed that it was functional in rat bone marrow-derived macrophages, but only present at a low level. Thus, we suggest that our results are consistent with the possibility that zymosan-induced respiratory burst may be independent of PKC and that these cells may not possess the minimal level of PKC required for responding to PMA.  相似文献   

9.
Freshly isolated human blood monocytes displayed a vigorous oxygen radical response, measured as release of superoxide anion (O2-), after stimulation with phorbol myristate acetate (PMA) or opsonized zymosan. High O2- release was observed with cells isolated by using a variety of procedures. Monocytes cultured in endotoxin-free medium M199 with or without 5% heat-inactivated autologous serum gradually lost this ability to produce O2- in response to PMA over the course of 4 days. The decreased responsiveness to PMA was accompanied by decreased adherence and viability. The loss of function, adherence, and viability was prevented by supplementing the culture medium with either bacterial lipopolysaccharide (LPS) or muramyl dipeptide (MDP). The O2- response of monocytes cultured for several days without bacterial products could be partially restored by the addition of LPS on day 2 or 3 of culture. Partial restoration could be detected in monocytes after only 1 hr of exposure to LPS, although a maximal response required a 2-day exposure. The minimum effective concentration of MDP was 1 ng/ml; stereoisomers of MDP, which are inactive as adjuvants, had no effect at 1 micrograms/ml. The minimum effective concentration of LPS was 1 pg/ml, corresponding to fewer than 10 molecules of LPS per monocyte. These results suggest that exposure to LPS or other bacterial products, represented here by MDP, may be required to preserve the microbicidal potential of human monocyte-macrophages in vivo.  相似文献   

10.
It has been reported in vitro that during the respiratory burst of phagocytic cells the superoxide anion production per cell shows a negative relation with the cell density. This process has been described as autoregulation. The aim of this work was to analyze the superoxide anion production in thioglycollate-elicited peritoneal macrophage exudates to evaluate the importance of the peritoneal cavity environment in the autoregulation process. 12-O-tetradecanoylphorbol-13-acetate (PMA) was used to stimulate the respiratory burst and superoxide anion production was measured evaluating the intracellular formazan deposits that precipitate as a result of nitro blue tetrazolium (NBT) reduction. We have demonstrated a negative correlation between superoxide anion production and cell density in the peritoneal cavity in macrophages challenged with PMA. The response of individual cells was analyzed by means of an image analyzer, measuring the amount of formazan per cell and cell-size changes during the process of activation. The results revealed that the decrease in individual cell response as a function of higher cell densities were due to a significant increase in the amount of basal reaction macrophages. Concomitantly, the number of reactive cells remained unchanged irrespective of the cell density of the population. A direct correlation between cell size and superoxide anion production was observed. This phenomenon was demonstrated in SENCAR and Balb/c strains. However, macrophages from SENCAR mice showed greater superoxide anion production than those from Balb/c.The differences between strains could be associated to the increased sensitivity to PMA tumor promotion of SENCAR mice. Based on this property, macrophages from SENCAR mice were stimulated with opsonized zymosan, a particulate stimulus that reflects the interaction macrophage-microorganism during the phagocytic process. This data will contribute to the knowledge of infection control. We conclude that variations in basal reaction cells modulates the macrophage activation response when excess macrophages are recruited to the peritoneum. This is demonstrated using different stimuli, thus suggesting that this response may be applied to a wide variety of stimuli-macrophage interactions. The differences between strains may be associated to the increased sensitivity to PMA tumor promotion of SENCAR mice.  相似文献   

11.
The effect of hyperoxia on the Ca2+ dependence of stimulated superoxide anion radical (O2-.) production (the respiratory burst) of rat alveolar macrophages was investigated. Enhancement of the concanavalin A (con A)-stimulated respiratory burst by extracellular Ca2+ was suppressed by O2 exposure. Similarly, the inhibitory effect of verapamil on the con A-stimulated respiratory burst was reduced by O2 exposure. O2 exposure also inhibited con A stimulation that was independent of Ca2+ entry. Exposure to O2 also caused a decline in O2-. production stimulated by either A23187 or phorbol myristate acetate (PMA). With A23187 stimulation, extracellular Ca2+ was essential for either air-exposed (control) or O2-exposed cells. With PMA, stimulation was independent of extracellular Ca2+ for either air or O2-exposed macrophages and verapamil did not inhibit. Free intracellular Ca2+ concentration ([Ca2+]i) was measured in control and O2-exposed alveolar macrophages. Hyperoxic exposure did not alter [Ca2+]i in unstimulated cells. In controls, con A stimulated an immediate increase in [Ca2+]i followed by a rapid decrease and a second rise and fall. The second elevation was suppressed by verapamil or ethyleneglycol-bis (beta-aminoethylether)-N,N'-tetraacetic acid or O2 exposure. The results of both the respiratory burst assays and measurement of con A-stimulated changes in [Ca2+]i suggest that Ca2+ entry involved in stimulus-response coupling is suppressed in cellular O2 toxicity.  相似文献   

12.
PMA enhanced release of the azurophil granule enzyme, beta-glucuronidase, as well as lysozyme, from cytochalasin B-treated PMN's exposed to either zymosan particles or C5a. PMA was active at nanomolar concentrations, was not toxic to the cells, and was most effective when present for brief durations (0-1 min) before exposure of the cells to the stimuli. Beta-glucuronidase was not released in significant amounts from PMN's exposed to PMA alone, in the absence of stimuli such as zymosan or C5a. In contrast, only the specific granule enzyme, lysozyme, was released from unstimulated cells. Electron micrographs of cells exposed to PMA revealed an increase in the number of visible cytoplasmic microtubules as compared to control cells. Enhancement of lysosomal enzyme (beta-glucuronidase) release by PMA appears to be independent of effects on release of specific granule enzymes (lysozyme), but rather is likely due to PMA-induced elevations of cellular cGMP.  相似文献   

13.
Macrophages release a variety of arachidonic acid metabolites after treatment with various membrane triggers or particulate stimuli. We examined the role of phospholipase and lipoxygenase inhibitors in the modulation of superoxide production and tumor cytolysis by murine macrophages. Superoxide was induced by the soluble stimulus, phorbol myristate acetate (PMA), and the particulate stimulus, opsonized zymosan, and was measured by the reduction of ferricytochrome c with the use of a micro ELISA reader. Macrophage-mediated tumor cytolysis was induced by hybridoma-derived, macrophage-activating factor (MAF) and was quantitated by 51Cr release from P815 target cells. In both assays, 72-hr peptone-elicited macrophages were used. Dexamethasone, and to a lesser degree hydrocortisone, inhibited superoxide release and MAF-induced tumor cytolysis. Inhibition in the superoxide assay required pretreatment with corticosteroid. Only the gold compound, auranofin, inhibited superoxide when given simultaneously with stimulant. Other phospholipase inhibitors, including mepacrine and 4-bromophenacyl bromide, and several lipoxygenase inhibitors, including BW755c, nordihydroguaiaretic acid (NDGA), and 5,8,11,14-eicosatetraynoic acid (ETYA), failed to modulate either macrophage response at nontoxic concentrations. At the concentrations tested in the tumoricidal and superoxide assays, mepacrine and 4-bromophenacyl bromide inhibited the release of 14C-arachidonic acid from macrophages stimulated with opsonized zymosan. Our data strongly suggest that corticosteroids suppress macrophage superoxide production and tumoricidal function by a nonphospholipase-dependent mechanism.  相似文献   

14.
In vivo exposure of rats to ozone or nitrogen dioxide results in a dose-dependent decrease in superoxide anion radical production (O2?·) by alveolar macrophages isolated from the exposed animals. When alveolar macrophages from ozone-exposed animals were stimulated with phorbol myristate acetate (PMA, a non-phagocytic stimulus of O2?· production) the decrease in O2?· production ranged from 85.9% of control at 3.2 ppm-hrs ozone to 7% of control at 10.5 ppm-hrs. In a similar fashion, O2?· production by PMA-stimulated macrophages from NO2-exposed rates ranged from 78% of control at 18.3 ppm-hrs NO2 down to 14.5% of control at 51 ppm-hrs. Since the viability of the alveolar macrophages obtained from ozone or nitrogen dioxide-exposed animals was 88% or better in all cases as judged by both Trypan blue exclusion and lactate dehydrogenase release, the decreased ability of these cells to produce superoxide anion radical cannot be attributed to a pollutant effect on cell viability. This diminution in superoxide anion radical production by alveolar macrophages from the pollutant-exposed animals might account, in part, for the ability of these 2 air pollutants to potentiate bacterial infections in laboratory animals.  相似文献   

15.
The treatment of Lewis rat peritoneal macrophages with p1-nitrophenyl p-guanidinobenzoate (NPGB) inhibited the superoxide anion production stimulated with phorbol myristate acetate (PMA). The addition of NPGB at the time of maximum superoxide generation was still able to block the superoxide release. It appears from these findings that NPGB may block either the activation process of the membrane bound NAD(P)H oxidase or directly on the active enzyme. Other protease inhibitors such as, epsilon-amino caproic acid (EACA), pepstatin, trans aminomethyl cyclohexane carboxylic acid (AMCA), aprotinin, and leupeptin did not inhibit the superoxide release. The superoxide anion release by the xanthine-xanthine oxidase system was not inhibited by NPGB. This finding indicates that NPGB does not itself react with superoxide. It has been also demonstrated that NPGB is a good reactant toward sulfhydryl group. The relevance of these finding to experimental allergic encephalomyelitis (EAE) is discussed.  相似文献   

16.
Murine resident peritoneal macrophages (RPM) generate superoxide (O2-) in response to stimulation with PMA or zymosan. Murine bone marrow-derived macrophages (BMM) generate O2- in response to zymosan but not PMA. However, the ability to generate O2- in response to PMA could be induced in BMM by pre-exposing the cells to certain cytokines, including granulocyte-macrophage CSF (GM-CSF), tumor necrosis factor-alpha (TNF-alpha), IFN-gamma, and, to a lesser extent, IL-1 alpha. Bacterial LPS also induced the ability to respond to PMA. These same agents were also shown to prime RPM for enhanced PMA-induced respiratory burst. In contrast to GM-CSF, CSF-1 did not enhance the ability of BMM or RPM to generate O2- in response to PMA. Pretreatment with GM-CSF or TNF-alpha did not significantly affect the zymosan-induced release of O2- by BMM. These results suggest that unprimed BMM have a deficiency in the PMA-dependent signaling pathway that is corrected by exposure to selected cytokines. The results also raise the possibility that the basal ability of tissue macrophages to generate a respiratory burst in response to PMA may be a reflection of in vivo exposure to cytokines.  相似文献   

17.
Unlike resident peritoneal macrophages (RPM) or tumor necrosis factor alpha (TNF alpha)-primed bone marrow-derived macrophages (BMM), unprimed BMM do not generate superoxide in response to the protein kinase C (PKC) activator, phorbol myristate acetate (PMA). However, these cells do contain significant levels of PKC activity. In contrast to PMA, zymosan induces the generation of superoxide in unprimed BMM, as well as in TNF alpha-primed BMM and RPM. Staurosporine, a potent PKC inhibitor, failed to affect the zymosan-induced production of superoxide by unprimed and TNF alpha-primed BMM and RPM, in spite of substantial inhibition of PMA-induced superoxide production by the primed BMM and RPM. However, when PKC was depleted from unprimed BMM by prolonged (24 h) treatment with phorbol dibutyrate (PdBt) (10(-7) M) the ability of zymosan to induce the production of superoxide was greatly diminished. Such a result could be interpreted as suggesting a role for PKC in the zymosan-induced response, a conclusion which contrasts with the inhibitor data. However, PKC depletion, in this case, is achieved via the PdBt-induced activation of PKC. It is thus possible that it is the initial activation of PKC, rather than its depletion, that suppresses superoxide production. Consistent with this interpretation, the co-stimulation of unprimed BMM with both zymosan and PMA resulted in a reduced superoxide release compared to zymosan alone. The activation of PKC therefore appears to have a suppressive effect on the generation of superoxide by unprimed cells. We thus conclude that PKC is not required for zymosan-induced superoxide production by either primed or unprimed macrophages and suggest that PKC may be involved in regulatory mechanisms restricting superoxide production by macrophages. However, since PMA alone can initiate the release of superoxide from primed BMM and RPM, it would appear that PKC can mediate both stimulatory and suppressive signals for macrophage superoxide production.  相似文献   

18.
Mouse bone marrow macrophages were obtained by cultivation in serum-free medium. Addition of specific fatty acids to the medium leads to macrophage populations which differ in their fatty acid composition. The fatty acid composition of the cellular membranes directly modulates functional abilities of the macrophages such as the generation of superoxide anion and phospholipase A2 activity in response to phorbol ester and zymosan. Both capacities were lowest in macrophages cultured serum-free without lipids. Incorporation of unsaturated fatty acids into macrophage phospholipids leads to an increase of O2- production as measured by lucigenin-dependent chemiluminescence and to an increased phospholipase A2 activity after challenge with phorbol ester or zymosan.  相似文献   

19.
Mononuclear phagocytes are undoubtedly the sine qua non of chronic inflammatory reactions. This is demonstrated by their unique ability to function as phagocytic, secretory, or effector cells during the course of an immune event. Although macrophages can perform a variety of immune tasks, their ability to function appropriately is dependent upon the mode of elicitation, the stimulus under investigation, the source of the macrophages (peritoneal, alveolar, etc.), and whether the macrophages are monolayers or in suspension. We have examined the relationship between adherent and non-adherent elicited peritoneal macrophages in terms of prostaglandin E2 (PGE2) and superoxide anion (O2) production; in addition, we hae studied these elicited macrophages in suspension for their ability to undergo transmembrane potential changes in response to several stimuli. Non-adherent, elicited peritoneal macrophages demonstrated an increase in basal PGE2 production, and were refractory to particulate stimulus. After monolayer formation, basal PGE2 levels dropped and the cell could respond to both soluble and particulate stimuli. Only adherent macrophages could respond to a specific challenge and synthesize O2. Both O2 production and depolarization of the transmembrane potential were suppressed in cell in suspension. Furthermore, both exogenous PGE2 and supernatant from macrophages in suspension could modulate O2 production by PMA challenged macrophages monolayers. These studies indicate that PGE2 may modulate macrophage function and dictate activity as macrophages go from the non-adherent to adherent state.  相似文献   

20.
Some biological effects of chronic cigarette smoking (two cigarettes for 2 h, daily for 4 months) in rats were evaluated. During the smoking period, body weight of smoker rats was always significantly lower than that of control rats. Immediately after the last smoking session the carboxyhaemoglobin concentration in the blood was about 8.5% and the polymorphonuclear cells in the bronchoalveolar fluid increased significantly. At the same time, enzymatic analyses on the supernatants of bronchoalveolar fluid revealed a significant increase of beta-glucuronidase in the smoker group. Alveolar macrophages, collected 0, 8 and 24 h after the last smoking session, significantly increased the generation of superoxide anion and, after incubation for 24 h at 37( degrees ) C in a humidified atmosphere, released significantly high amounts of TNF-alpha. When challenged with lipopolysaccharide, alveolar macrophages of smoker rats released much more TNF-alpha but, in such a case, TNF-alpha release was about one half of that observed in the control group. Peritoneal macrophages of both control and smoker rats were unable either to generate high levels of superoxide anion or to release significant amounts of TNF-alpha. The results clearly demonstrated the activated state of alveolar macrophages and the resting state of peritoneal macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号