首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Summary The seminal vesicle of the African catfish, Clarias gariepinus, consists of 36–44 fingerlike lobes built up of tubules in which a fluid is secreted containing acid polysaccharides, acid-, neutral- and basic proteins, and phospholipids. In this fluid sperm cells are stored. The seminal vesicle fluid immobilizes the sperm cells. After ejaculation, it prolongs the period of sperm activity. The seminal vesicle fluid is secreted by the epithelium lining the tubules. The tubules in the proximal part of the lobes are predominantly lined by a simple cylindrical and those of the distal part by a simple squamous epithelium. These epithelial cells contain enzymes involved in energy-liberating processes, the enzyme activites being proportional to the height of the cells. Interstitial cells between the tubules have enzyme-histochemical and ultrastructural features indicative of steroid biosynthesis. Similar characteristics are found in testicular interstitial cells. The most rostral seminal vesicle lobes and the most caudal testicular efferent tubules form a network of tubules that opens at the point where the paired parts of the sperm ducts fuse with each other. The tubules of most seminal vesicle lobes, however, form a complex system that fuses with the unpaired part of the sperm duct.  相似文献   

2.
Eight adult American black bears were used to evaluate the effects of chemical castration by intratesticular zinc gluconate treatment on testicular dimensions, echodensity, histology, sperm production, and testosterone secretion. Treatment did not affect testicular dimensions and did not result in decreased resting or GnRH-stimulated testosterone secretion. Multifocal hyperchoic areas in the testicular parenchyma were observed on ultrasound examination, and white foci were observed on gross pathology examination after zinc gluconate treatment. Histologically, there were normal seminiferous tubules containing either round or elongated spermatids, along with abnormal tubules in all bears after treatment. Vacuolation of the seminiferous epithelium, sloughing of germ cells into the tubules' lumen, presence of multinuclear giant cells, and reduced height of the seminiferous epithelium with missing generations of germ cells were commonly observed. The most severe testicular changes were multifocal and included fibrosis, complete degeneration of the seminiferous epithelium with shrinkage of the tubule, and sperm stasis. Epididymal sperm reserve was 982.74 ± 654.16 × 106 sperm (mean ± SEM) and motile sperm were observed in the epididymis of all but one of the bears. In conclusion, although intratesticular zinc gluconate treatment in black bears resulted in testicular degenerative changes detected by ultrasound and histology examinations, sperm production was not completely ablated. We inferred that normal fertility might have been compromised, but treatment unlikely resulted in sterility.  相似文献   

3.
为探讨不同转染试剂(LipofectamineTM LTXPLUSTM、Lipofectamine2000和纳米化聚酰胺-胺型树枝状聚合物(PAMAM-D))和睾丸注射方法 (睾丸网注射、曲精细管注射和间质注射)对转基因小鼠生产效率的影响,将pEGFP-C1质粒分别与不同转染试剂混合后,按照不同的注射方法注入小鼠睾丸内,30 d后检测小鼠精子密度、活力、精子阳性率以及配种后仔鼠转基因阳性率。结果 3种转染试剂对小鼠繁殖性能影响由小到大依次为LipofectamineTM LTXPLUSTM、Lipofectamine 2000和PAMAM-D。转染后LipofectamineTM LTXPLUSTM、Lipofectamine 2000和PAMAM-D组精子的GFP阳性率分别为35.65%±0.69%、12.86%±0.35%和10.04%±0.20%。配种后仔鼠的PCR阳性率分别为29.17%、13.70%和5.88%。3种不同注射方法对小鼠睾丸都造成损伤,由小到大依次为睾丸网注射、曲精细管注射和睾丸间质注射,三者的阳性精子比例分别为35.13%±1.727%、15.13%±1.457%和0%,配种后仔鼠的PCR阳性率分别为33.3%、12.5%和0%。结果表明,LipofectamineTM LTXPLUSTM和睾丸网注射对小鼠睾丸的损伤最小,并能获得较高的转染效率。  相似文献   

4.
Histopathology in testes from mice with actively induced experimental orchitis (EAO) (active EAO) and those from recipients of testis-sensitized lymphocytes (passive EAO) had different distributions. In passive EAO, maximum orchitis existed in the straight tubules, rete testis, and ductus efferentes, obstruction of which led to extreme dilatation of seminiferous tubules. Unusual intralymphatic granulomata also resulted in dilated testicular lymphatics. In active EAO, maximum orchitis affected seminiferous tubules under the testicular capsule, away from the rete testes. Vasitis was common and occurred in both active and passive EAO. In normal testes, IA+ F4/80+ cells were sparse but formed a cuff around the straight tubules. After immunization with testis in adjuvant or with adjuvant alone, the number, size, and staining intensity of IA+ cells increased dramatically beginning on day 5, 7 days before disease onset. Simultaneously, epithelial cells confined to the ductus efferentes became Ia+. Although recipients of sensitized lymphocytes also developed epithelial Ia in the ductus efferentes, they did not show changes in testicular interstitial Ia+ cells. Our findings indicate that testicular autoantigens are not completely sequestered, but are accessible to and can react with passively transferred immune lymphocytes in well-defined regions of the germ cell compartment. These regions coincided to a large extent with maximum expression of periductal or epithelial Ia. Changes in Ia+ cells in the testis, which are inducible by adjuvants and precede orchitis, may account in part for the different distribution of histopathology of active EAO.  相似文献   

5.
6.
DNOC, Ferbam and Imidan were tested in (C3H X C57BL/6) F1 mice to assess their potential testicular toxicity. Chemicals were administered i.p. and per os at different doses for 5 consecutive days. After 35 days the testicular was toxicity was evaluated by measuring the testicular weights, the sperm counts and the percentage of abnormal sperm. DNOC and Imidan failed to induce teratospermia in mice treated by both routes of administration. Conversely Ferbam induced a statistically significant increase in teratospermia only following per os administration to mice at a dose of 1000 mg/kg b.w./day. These data indicate that per os administration of Ferbam succeeded in producing active metabolites able to interfere with the differentiation process of spermatogenic cells.  相似文献   

7.
To determine the relationship between germ cell degeneration or germ cell:Sertoli cell ratio and daily sperm production, testes were obtained during the months of May to July (breeding season) and November to January (nonbreeding season) from adult (4 to 20-yr-old) stallions with either high (n = 15) or low (n = 15) sperm production. Serum was assayed for concentrations of LH, FSH and testosterone. Testes were assayed for testosterone content and for the number of elongated spermatids, after which parenchymal samples were prepared for histologic assessment. Using morphometric procedures, the types and numbers of spermatogonia, germ cells and Sertoli cells were determined. High sperm producing stallions had greater serum testosterone concentration, total intratesticular testosterone content, testicular parenchymal weight, seminiferous epithelial height, diameter of seminiferous tubules, numbers of A and B spermatogonia per testis, number of Sertoli cells per testis, and number of B spermatogonia, late primary spermatocytes, round spermatids and elongated spermatids per Sertoli cell than low sperm producing stallions (P < 0.05). The number of germ cells (total number of all spermatocytes and spermatids in Stage VIII tubules) accommodated by Sertoli cells was reduced in low sperm producing stallions (18.6 +/- 1.3 germ cells/Sertoli cell) compared with that of high sperm producing stallions (25.4 +/- 1.3 germ cells/Sertoli cell; P < 0.001). The conversion from (yield between) early to late primary spermatocytes and round to elongated spermatids was less efficient for the low sperm producing stallions (P < 0.05). Increased germ cell degeneration during early meiosis and spermiogenesis and reduced germ cell:Sertoli cell ratio was associated with low daily sperm production. These findings can be explained either by a compromised ability of the Sertoli cells to support germ cell division and/or maturation or the presence of defects in germ cells that predisposed them to degeneration.  相似文献   

8.
The serum obtained from an infertile woman induced a specific head-to-head agglutination of human and rat sperm. The immunoglobulin G (IgG) fraction of the serum was obtained and found to interact with the proteins of rat sperm in testis and epididymis. Using an indirect immunofluorescent method with rat sperm from vas deferens, we determined that the antibody recognized the protein on the convex and concave regions of the acrosome and over the entire tail. However, with testicular spermatozoa, the antibody recognized only the distal end of the tails. In paraffin sections of adult rat testis, sperm tails located at the luminal region of the seminiferous tubules stained intensely. Weak but significant staining also occurred on late spermatids. In the epididymal sections, staining was restricted to spermatozoa in the lumen. On the other hand, sections of testes from 25-day-old rats containing spermatogonia and early spermatocytes had a completely negative reaction. Testicular somatic cells, including Sertoli cells, peritubular myoid cells and interstitial cells, did not stain. To identify the testicular protein interacting with the antibody, adult rat testis proteins were prepared and analyzed by a sodium dodecyl sulfate-polyacrylamide gel electrophoretic (SDS-PAGE) immunoblot technique. The antibody interacted with a protein with an estimated molecular weight of 82,000 in the testicular homogenate and particulate fraction, whereas the reaction was considerably weaker with the testicular cytosol fraction.  相似文献   

9.
The present study was undertaken (1) to document structural and functional changes in the testes of seasonally breeding woodchuck during active and inactive states of spermatogenesis and (2) to evaluate the ability of exogenous gonadotropins to reinitiate spermatogenesis outside the breeding season. During seasonal gonadal inactivity, there were significant (P less than 0.05) reductions in volumes of several testicular features (testis, seminiferous tubules, tubular lumen, interstitial tissue, individual Leydig cells, Leydig cell nuclei, and Leydig cell cytoplasm) as compared with gonadally active animals. The diameter of the seminiferous tubules was decreased by 26%, and Leydig cell numbers also declined in the regressed testes. These changes were accompanied by a decline in testosterone (T) levels in both plasma and testis, and reduction in epithelial height of accessory reproductive organs. A hormonal regimen was developed that would reinitiate spermatogenesis in captive, sexually quiescent woodchucks. A combination of PMSG and hCG markedly stimulated testicular growth and function and restored spermatogenesis qualitatively. Quantitatively normal spermatogenesis was restored in 2 of 6 treated males. Morphometric analyses revealed substantial increases in seminiferous tubular diameter and in the volume of seminiferous tubules, tubular lumen, total Leydig cells, and individual Leydig cells in the hormone-treated animals. These increased values corresponded to 99, 75, 68, 51, and 200%, respectively, of the values measured in naturally active woodchucks. Leydig cell numbers, however, remained unchanged and approximated only 31% of the number found in naturally active testes. Hormonal stimulation also resulted in a significant rise in serum T as well as in the total content of testicular T, and a marked increase in epithelial height in various accessory reproductive glands. The most effective hormonal protocol for stimulating spermatogenesis was treatment with 12.5 IU of PMSG twice a week for 4 weeks followed by 12.5 IU of PMSG + 25 IU of hCG twice a week for 4 weeks.  相似文献   

10.
In mouse, two different isoforms of ADAM1 (fertilin alpha), ADAM1a and ADAM1b, are produced in the testis. ADAM1a is localized within the endoplasmic reticulum of testicular germ cells, whereas epididymal sperm contain only ADAM1b on the plasma membrane. In this study, we show that the loss of ADAM1a results in the male infertility because of the severely impaired ability of sperm to migrate from the uterus into the oviduct through the uterotubal junction. However, epididymal sperm of ADAM1a-deficient mice were capable of fertilizing cumulus-intact, zona pellucida-intact eggs in vitro despite the delayed dispersal of cumulus cells and the reduced adhesion/binding to the zona pellucida. Among testis (sperm)-specific proteins examined, only the level of ADAM3 (cyritestin) was strongly reduced in ADAM1a-deficient mouse sperm. Moreover, the appearance of ADAM3 on the sperm surface was dependent on the formation of a fertilin protein complex between ADAM1a and ADAM2 (fertilin beta) in testicular germ cells, although no direct interaction between the fertilin complex and ADAM3 was found. These results suggest that ADAM1a/ADAM2 fertilin may be implicated in the selective transport of specific sperm proteins including ADAM3 from the endoplasmic reticulum of testicular germ cells onto the cell surface. These proteins then can participate in sperm migration into the oviduct, the dispersal of cumulus cells, and sperm binding to the zona pellucida.  相似文献   

11.
Weekly changes in the gonadosomatic index (IG) of male golden rabbitfish Siganus guttatus showed two peaks corresponding with the new moons in June and July. The testes developed synchronously toward the first lunar quarter in June and July. After the second spawning, the sperm duct and the seminiferous tubules were occupied by residual spermatozoa and spermatogonia, respectively. Weekly changes of plasma testosterone, 11-ketotestosterone and 17,20β-dihydroxy-4-pregnen-3-one coincided with those of testicular activity. They reached their peaks 1 week before spawning coinciding with the peaks of IG and testicular development. These cyclical changes in plasma steroid hormones suggest that lunar periodicity is a major factor that synchronizes testicular activity of S. guttatus .  相似文献   

12.
Changes in Leydig cell histology and testicular sudanophilic lipids were examined in relation to spermatogenic activity in the bat Myotis lucifugus lucifugus (Chiroptera: Vespertilionidae) throughout the annual cycle in the northeastern United States. These changes were correlated with annual variations in plasma testosterone concentrations which have recently been described for this species. Gametogenic activity occurred during the months of May-August when bats were metabolically most active. During hibernation (October-April), when sperm are stored in the epididymides, and accessory glands are hypertrophic, the seminiferous tubules were at rest, and the germinal epithelium was reduced to reserve spermatogonia and Sertoli cells. Based on their structure and cyclic pattern of sudanophilic lipids, Leydig cells exhibited a pattern of activity that closely paralleled that of the seminiferous epithelium. On renewal of spermatogenesis in spring, Leydig cells became hypertrophied and accumulated lipid inclusions. These inclusions, seen as vacuoles in plastic sections and sudanophilic droplets in frozen sections, reached maximal accumulations in late June. In late July and during August, when peak testosterone levels occur in blood, lipid droplets were dramatically depleted, and Leydig cells were weakly sudanophilic. In September, when testosterone titers return to low baseline levels, Leydig cells had regressed but exhibited a marked increase in sudanophilic inclusions which appeared to be mostly lipofuscins. During the ensuing mating and hibernation periods, Leydig cells were involuted and filled with lipofuscins. During the periarousal period, however, Leydig cells became weakly Sudan-positive while many large, intensely sudanophilic cells were scattered throughout the interstitium. In electron micrographs these cells were identified as macrophages. They appear to play an important role in the annual testicular cycle by phagocytizing the residues of Leydig cell involution in preparation for a new steroidogenic cycle. Seasonal changes in lipid inclusions were also observed in the seminiferous tubules. In addition, the relationship of the Leydig cell cycle to androgen action and the accessory organs in this bat is discussed.  相似文献   

13.
To characterize the male rhesus monkey as a nonhuman primate model for human testicular functions, parameters of exocrine and endocrine testicular function were monitored in 16 adult male-rhesus monkeys for 1 and 5 years respectively. Testicular volumes in-season (October–January) were twice as great as in out-of-season animals (March–June). Ejaculations, both spontaneous and electrostimulated, ceased out-of-season. In 37 ejaculates obtained by electrostimulation in-season, sperm counts ranged from 110–1,100 million/ejaculate, 65% of sperm were motile and 60% were normally formed. Testicular histology showed regression of spermatogenesis out-of-season, with the diameter of the tubules being only one third of that in-season. Circannual changes in exocrine testicular function were accompanied by parallel fluctuations in pituitary and endocrine testicular functions, as evidenced by basal hormone levels and the production rate of testosterone, as well as the response to LH-RH throughout the year. As FSH is required for spermatogenesis in rhesus monkeys, we initiated a study on the long-term effects of active immunization against FSH as a possible means of fertility control. After the first 2 years of observation we can conclude that the production of specific antibodies to FSH results in suppression of spermatogenesis (oligospermia and occasional azoospermia) without affecting endocrine function. The lack of adverse side effects may encourage further investigations on this approach to fertility control. LH-RH-agonists exert degenerative effects on testicular function in rats via a down regulation of the pituitary and testis. A 12 week treatment of four adult monkeys in-season with Hoe 766 (Hoechst; 4μg/day for eight weeks, 20μg/day for 4 weeks sc) did not reveal any change in sperm counts or motility, although some pituitary desensitization was evident. It remains to be investigated whether even higher doses may result in a suppression of spermatogenesis.  相似文献   

14.
Cyclosporine A (CsA)-induced direct failures in hypothalamic-pituitary-gonadal axis and Sertoli cell phagocytic function have been considered for testicular toxicity so far. It has clearly been reported that oxidative stress leads to damage in sperm functions and structure of the testis. Therefore, this study was conducted to demonstrate whether CsA causes testicular and spermatozoal toxicity associated with the oxidative stress, and to investigate the possible protective effect of lycopene against CsA-induced damages in all reproductive organs and sperm characteristics in male rats. While the daily administration of CsA at the dose 15 mg/kg for 21 days significantly decreased the seminal vesicles weight, epididymal sperm concentration, motility, testicular tissue glutathione (GSH), glutathione peroxidase (GSH-Px) and catalase (CAT), diameter of seminiferous tubules and germinal cell thickness, it increased malondialdehyde (MDA) level and abnormal sperm rates along with degeneration, necrosis, desquamative germ cells in testicular tissue. However, the CsA along with simultaneous administration of lycopene at the dose of 10mg/kg markedly ameliorated the CsA-induced all the negative changes observed in the testicular tissue, sperm parameters and oxidant/antioxidant balance. In conclusion, CsA-induced oxidative stress leads to the structural and functional damages in the testicular tissue and sperm quality of rats and, lycopene has a potential protective effect on these damages.  相似文献   

15.
Blottner S  Schön J  Jewgenow K 《Theriogenology》2006,66(6-7):1593-1598
Seasonal changes in spermatogenesis were studied with respect to testicular production of both testosterone and epidermal growth factor (EGF) in mink. The testes were collected in November (n = 15; testis recrudescence), February (n = 15; before breeding season), March (n = 14; breeding season), and May (n = 11; testis involution) and the following parameters of testicular activity were quantified: testicular mass, number of testicular spermatozoa, percentages of haploid, diploid, and tetraploid (G2/M-phase) cells and content of testosterone and EGF. The growth factor was immunohistochemically localized in the parenchyma. Testis mass, spermatogenic activity, and the production of both testosterone and EGF were maximal in March, but were not significantly different from the levels in February. The correlation between testis weight and sperm per testis was r = 0.825 (P < 0.001). Testosterone and EGF levels were correlated to each other (r = 0.78; P < 0.001) and had significant positive correlations to testis mass, number of sperm and proportion of haploid cells; and negative correlations to percentages of mitotic cells. EGF was localized in interstitial cells and in the luminal region of seminiferous tubules, where it occurred during the last steps of spermiogenesis. We inferred that intensified seasonal spermatogenesis was stimulated by testosterone and by autocrine/paracrine effects of EGF.  相似文献   

16.
The continuous production of mammalian sperm is maintained by the proliferation and differentiation of spermatogonial stem cells that originate from primordial germ cells (PGCs) in the early embryo. Although spermatogonial stem cells arise from PGCs, it is not clear whether fetal male germ cells function as spermatogonial stem cells able to produce functional sperm. In the present study, we examined the timing and mechanisms of the commitment of fetal germ cells to differentiate into spermatogonial stem cells by transplantation techniques. Transplantation of fetal germ cells into the seminiferous tubules of adult testis showed that donor germ cells, at 14.5 days postcoitum (dpc), were able to initiate spermatogenesis in the adult recipient seminiferous tubules, whereas no germ cell differentiation was observed in the transplantation of 12.5-dpc germ cells. These results indicate that the commitment of fetal germ cells to differentiate into spermatogonial stem cells initiates between embryonic days 12.5 and 14.5. Furthermore, the results suggest the importance of the interaction between germ cells and somatic cells in the determination of fetal germ cell differentiation into spermatogonial stem cells, as normal spermatogenesis was observed when a 12.5-dpc whole gonad was transplanted into adult recipient testis. In addition, sperm obtained from the 12.5- dpc male gonadal explant had the ability to develop normally if injected into the cytoplasm of oocytes, indicating that normal development of fetal germ cells in fetal gonadal explant occurred in the adult testicular environment.  相似文献   

17.
Seven rhodamine-conjugated lectins (PNA, RCA I, SBA, Con A, WGA, UEA I, and DBA; see Table 1) were utilized in studying the staining pattern of glycoproteins in rat testis and epididymis after ligation of ductuli efferentes (DE), corpus epididymidis (CE), and vas deferens (VD) for various time periods. Ductuli efferentes ligation caused a widening of seminferous tubules and detachment of spermatids with formation of multinuclear cells. These cells acquired a strong affinity for all lectins. Corpus epididymidis ligation also caused degeneration of spermatids with increased lectin staining in some tubules, but after 7 days another cell population close to the periphery of seminiferous tubules showed an increased nuclear affinity for some lectins followed by a clear degeneration and strong cytoplasmic staining with all lectins. Vas deferens ligation caused no degenerative changes in testicular spermatids. However, the peripheral cell population showed degenerative changes similar to those found after CE ligation. In both cases this was coincident with the formation of spermatic granulomas at the site of ligation. Ductuli efferentes ligation caused a gradual decrease of intratubular content in caput epididymidis, while the contrary was true after CE ligation. The latter was associated with intratubular accumulation of lectin-positive swollen cells and sperm aggregates as well as an increased lectin staining of narrow cells in initial segment and light cells in distal caput. After VD ligation an increased staining of light cells was initially found in distal cauda and distal caput, but, concomitant with distension of the tubules this reaction decreased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Thirty-nine Brahman bulls with an initial age and weight of 301.7 +/- 4.1 d and 202.7 +/- 4.7 kg, respectively, were randomly allocated to 1 of 2 dietary treatment groups within age, weight and sire in order to study the influence of source of protein and stage of peripuberal period on testicular and epididymal function. In the soybean meal treatment the amount of protein undegradable in the rumen averaged 47%, while it was 72% in the fish meal treatment. The supplements were isocaloric and isonitrogenous. Bulls were electroejaculated, and castrations were performed randomly in a predetermined order when the first ejaculate with the first motile sperm cells (Stage 1), 10 to 25 million (Stage 2), and 50 million or more sperm cells (Stage 3 - puberty) was obtained. Testicular and epididymal traits were analyzed for a single testicle and epididymis. Daily sperm production, daily sperm production per gram of testicular parenchyma, testicular weight and testicular parenchyma weight were not affected by treatment. Bulls receiving fish meal had heavier (P < 0.01) epididymis than soybean meal-fed bulls (6.6 +/- 1.0 vs 3.9 +/- 0.6 g) but similar (P > 0.05) epididymal sperm reserves. Daily sperm production (1 testicle) was 115.2 +/- 0.1, 447.4 +/- 0.1, 792.7 +/- 0.1 million sperm cells, and daily sperm production per gram of testicular parenchyma was 1.5 +/- 0.5, 3.2 +/- 0.6 and 6.4 +/- 0.6 million sperm cells for bulls at Stage 1, 2 and 3, respectively. Sire and amount of undegradable intake protein had significant (P < 0.05) affects on the distribution of epididymal sperm reserves, with soybean meal-fed bulls having the higher proportions of epididymal sperm reserves in the cauda epididymis.  相似文献   

19.
The ectopic xenotransplantation of testicular tissues into nude mice is a tool to generate sperm from immature testes. Immunodeficient mice as recipients of xenografts offered an appropriate microenvironment for differentiation of testicular tissue from hamsters, goats, pigs, and macaques. One exception is the neotropical primate Callithrix jacchus. Spermatogenesis in testicular grafts from marmosets does not proceed beyond the spermatogonial stage. The most likely cause for the poor graft development of marmosets is a deletion of exon 10 in the luteinizing hormone-receptor (LHR) gene, which renders this species insensitive to LH but responsive to chorionic gonadotropin (CG). We investigated whether cografting of testicular tissue from Djungarian hamsters would overcome the blockade in marmoset graft development. We also tested if exogenous administration of human CG (hCG) to the recipient would stimulate development of the marmoset tissue. No difference in graft survival was noted between hamster and monkey tissue. Seminiferous lumina were present in marmoset and hamster grafts but were significantly larger in hamster grafts. In the hamster grafts, a high proportion of the tubules contained meiotic and postmeiotic germ cells. In contrast, the marmoset tubules were populated with gonocytes and premeiotic spermatogonia. These results indicate that neither normal serum androgen levels nor the high local testosterone levels were sufficient to initiate marmoset spermatogenesis, nor was administration of hCG successful in overcoming the developmental blockade in marmoset tissue. Our results indicate that the conditions needed for initiation of spermatogenesis in the marmoset are remarkably different from those present in most other mammals.  相似文献   

20.
Although the technique of intracytoplasmic sperm injection (ICSI) has been a revolution in the alleviation of male infertility, the use of testicular sperm for ICSI was a formerly unseen breakthrough in the treatment of the azoospermic man with primary testicular failure. At the clinical level, different procedures of testicular sperm retrieval (conventional TESE, micro-TESE, FNA/TESA, MESA, PESA) are being performed, the choice is mainly based on the cause of azoospermia (obstructive versus non-obstructive) and the surgeon’s skills. At the level of the IVF laboratory, mechanical procedures to harvest the sperm from the tissue may be combined with enzymatic treatment in order to increase the sperm recovery rates. A number of techniques have been developed for viable sperm selection in males with only immotile testicular sperm available. However, large, well-designed studies on the benefit and safety of one over the other technique are lacking. Despite all the available methods and combinations of laboratory procedures which have a common goal to maximize sperm recovery from testicular samples, a large proportion of NOA patients fail to father a genetically own child. Advanced technology application may improve recovery rates by detection of the testicular foci with active spermatogenesis and/or identification of the rare individual sperm in the testicular suspensions. On the other hand, in vitro spermatogenesis or sperm production from embryonic stem cells or induced pluripotent stem cells might be future options. The present review summarizes the available strategies which aim to maximize sperm recovery from surgically retrieved samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号