首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Adsorption of Cr(VI) on activated rice husk carbon and activated alumina   总被引:2,自引:0,他引:2  
The possible use of activated rice husk and activated alumina as the adsorbents of Cr(VI) from synthetic solutions and the effect of operating parameters were investigated. The activated rice husk carbon was prepared thermally in two sizes 0.3 and 1.0 mm. The maximum removal of Cr(VI) occurred at pH 2 by activated rice husk and at pH 4 by activated alumina. The amounts of Cr(VI) adsorbed increased with increase in dose of both adsorbents and their contact time. The Freundlich isotherm was applied.  相似文献   

2.
Apricot stones were carbonised and activated after treatment with sulphuric acid (1:1) at 200 degrees C for 24 h. The ability of the activated carbon to remove Ni(II), Co(II), Cd(II), Cu(II), Pb(II), Cr(III) and Cr(VI) ions from aqueous solutions by adsorption was investigated. Batch adsorption experiments were conducted to observe the effect of pH (1-6) on the activated carbon. The adsorptions of these metals were found to be dependent on solution pH. Highest adsorption occurred at 1-2 for Cr(VI) and 3-6 for the rest of the metal ions, respectively. Adsorption capacities for the metal ions were obtained in the descending order of Cr(VI) > Cd(II) > Co(II) > Cr(III) > Ni(II) > Cu(II) > Pb(II) for the activated carbon prepared from apricot stone (ASAC).  相似文献   

3.
In the present study, adsorption of Cr(III) and Cr(VI) on Pumice (Pmc), Yarikkaya (YK) brown coal, Chelex-100, and Lewatit MP 62 is examined at room temperature and at initial chromium concentration of 1.0 x 10(-3) mol/L. Column method was carried out as a function of pH, concentration of Cr(III) and Cr(VI) ions, volume of samples and flow rate. The experimental data were evaluated by Freundlich and Langmuir isotherm models. The dynamic breakthrough capacities of the adsorbents for Cr(III) and Cr(VI) were calculated. The maximum chromium sorption occurred at 5 mL/min flow rate and 25 mL volume for all adsorbents. The results showed that the two readily available adsorbents namely Pmc and YK, were suitable for removing chromium from aqueous solution.  相似文献   

4.
Biosorption of Cr (VI) from aqueous solution by Rhizopus nigricans   总被引:3,自引:0,他引:3  
The study was aimed to quantify the Cr sorption ability of powdered biomass of Rhizopus nigricans at the best operating conditions. The influence of solution pH, agitation, Cr (VI) concentration, biomass dosage, contact time, biomass particle size and temperature were studied. The optimum pH for biosorption of Cr (VI) was found to be 2.0. Higher adsorption percentage was noted at lower initial concentrations of Cr ions, while the adsorption capacity of the biomass increased with increasing concentration of ions. Optimum biomass dosage was observed as 0.5% (w/v). More than 75% of the ions were removed within 30 min of contact and maximum removal was obtained after 8 h. Biomass particles of smaller size (90 microm) gave maximum adsorption (99.2%) at 100 mg/l concentration. The adsorption capacity increased with increase in temperature and agitation speed and the optimum were determined as 45 degrees C at 120 rpm. Freundlich and Langmuir isotherms were used to evaluate the data and the regression constants were derived. The adsorption rate constant values (Kad) were calculated for different initial concentration of Cr ions and the sorption was found to be higher at lower concentration (100 mg/l) of metal ion.  相似文献   

5.
Adsorption of chromium from aqueous solution on treated sawdust   总被引:13,自引:0,他引:13  
The adsorption of Cr(VI) from aqueous solutions on formaldehyde treated sawdust (SD) and sulphuric acid treated sawdust carbon (SDC) of Indian Rosewood, a timber industry waste, was studied at varying Cr(VI) concentrations, adsorbent dose, pH and agitation time. Similar experiments were conducted with commercially available coconut based activated carbon to compare the results. The Cr(VI) adsorption efficiency on SDC was higher than SD. The adsorption followed first order rate expression and Lagergren equation. An initial pH of 3.0 was most favorable for Cr(VI) removal by both the adsorbents. Maximum Cr(VI) was sequestered from the solution within 60 min after the beginning for every experiment. It is proposed that SDC and SD can be potential adsorbents for Cr(VI) removal from dilute solutions.  相似文献   

6.
Humic acid (HA) produced from brown coal, a relatively abundant and inexpensive material is currently being investigated as an adsorbent to remove toxic metals from aqueous solution. The influence of five parameters (contact time, solution pH, initial metal concentration, temperature and amount of adsorbent) on the removal at 20+/-1 degrees C was studied. HAs were prepared from lignites by using alkaline extraction, sedimentation and acidic precipitation. Adsorption equilibrium was achieved in about 60 min for Cr3+ ion. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. The maximum adsorption capacity of 0.17 mmol for Ilgin (HA1), 0.29 mmol for Beysehir (HA2) and 0.18 mmol Ermenek (HA3) and 0.17 mmol of Cr3+/g for activated carbon (AC) was achieved, respectively at pH of 4.1. More than 84% of Cr3+ was removed by HA2, 54% by HA3 and 51% by HA1 and 50% by AC from aqueous solution. The adsorption was strongly dependent on pH but independent of ionic strength and metal ions. The adsorption of Cr3+ was higher between pH 4.1 and 5.1 for all HAs and maximum sorption was observed at pH 4.1. The rise in temperature caused a slight decrease in the value of the equilibrium constant (Kc) for the sorption of Cr3+ ion. Complex mechanisms including ion exchange, complexation and adsorption and size exclusion are possible for sorption of Cr3+ ion on HAs.  相似文献   

7.
The adsorption Cr(VI) from aqueous solutions onto hazelnut shell activated carbon was carried out by varying the parameters such as pH, initial Cr(VI) concentration and temperature. The experimental data fitted well to the pseudo first-order kinetic model and then the rate constants were evaluated. The Langmuir isotherm provided the best correlation for Cr(VI) onto the activated carbon. Adsorption capacity was calculated from the Langmuir isotherm as 170 mg/g at an initial pH of 1.0 for the 1000 mg/l Cr(VI) solution. Thermodynamic parameters were evaluated and the adsorption is endothermic showing monolayer adsorption of Cr(VI).  相似文献   

8.
The sorption of highly toxic Cr(VI) ions by cassava waste biomass was quantitatively investigated. The sorption was found to be influenced by several physico-chemical factors such as agitation speed, temperature, contact time, pH, and sorbent/sorbate ratio. The adsorption data at equilibrium were fitted to Freundlich and Langmuir isotherms. The monolayer sorption capacity was found to be 61.79 mg of Cr(VI) per gram of biomass. The kinetics of Cr(VI) adsorption to pure cassava-tuber-bark wastes were determined based on a pseudo-second-order-rate model using the batch-sorption technique at a temperature of 30 degrees. The kinetics data suggest that the adsorption process is exothermic, and that the rate-limiting step is physisorption. Negative DeltaG(ads) values indicate that the adsorption is spontaneous and exothermic in nature. Also, under optimal conditions (in agitated 1M H(2)SO(4) at 30 degrees), the cassava waste biomass appears to be recyclable.  相似文献   

9.
The ability of Penicillium purpurogenum to bind high amounts of chromium(VI) from aqueous solutions is demonstrated. Cr(VI) adsorption capacity increases with time during the first four hours and then leveled off toward the equilibrium adsorption capacity. Biosorption of Cr(VI) ions reached equilibrium in four hours. Binding of Cr(VI) ions with Penicillium purpurogenum biomass was clearly pH dependent. Cr(VI) loading capacity increased with increasing pH. The adsorption of Cr(VI) ions reached a plateau value at a pH of approx. 6.0. The maximum capacity of adsorption of Cr(VI) ions onto the fungal biomass was 36.5 mg/g. Adsorption behavior of Cr(VI) ions can be approximately described with the Langmuir equation. When applying the Langmuir model, the maximum adsorption capacity (Qmax) and the Langmuir constant were found to be 40 mg/g and 3.9 × 10–3 mg/L. Elution of Cr(VI) ions was performed by means of 0.5 M HCl. It was possible to use the biomass of Penicillium purpurogenum for six cycles for biosorption.  相似文献   

10.
Comparative studies on the adsorption of Cr(VI) ions on to various sorbents   总被引:2,自引:0,他引:2  
The adsorption of Cr(VI) ions onto various sorbents (chitin, chitosan, ion exchangers; Purolite CT-275 (Purolite I), Purolite MN-500 (Purolite II) and Amberlite XAD-7) was investigated. Batch adsorption experiments were carried out as a function of pH, agitation period and concentration of Cr(VI) ions. The optimum pH for Cr(VI) adsorption was found as 3.0 for chitin and chitosan. The Cr(VI) uptake by ion exchangers was not very sensitive to changes in the pH of the adsorption medium. The maximum chromium sorption occurred at approximately 50 min for chitin, 40 min for Purolite II and 30 min for chitosan, Purolite I and Amberlite XAD-7. The suitability of the Freundlich and Langmuir adsorption models were also investigated for each chromium-sorbent system. Adsorption isothermal data could be accurately interpreted by the Langmuir equation for chitosan, chitin, Purolite I and Purolite II and by the Freundlich equation for chitosan, chitin and Amberlite XAD-7. The chromium(VI) ions could be removed from the sorbents rapidly by treatment with an aqueous EDTA solution and at the same time the sorbent regenerated and also could be used again to adsorb by heavy metal ions. The results showed that, chitosan, which is a readily available, economic sorbent, was found suitable for removing chromium from aqueous solution.  相似文献   

11.
Batch removal of chromium(VI) from aqueous solution by Turkish brown coals   总被引:1,自引:0,他引:1  
The ability of using low-rank Turkish brown coals (Ilgın: BC1, Beyşehir: BC2, and Ermenek: BC3) to remove Cr(VI) from aqueous solutions was studied as a function of contact time, solution pH, temperature, concentration of metal solutions and amount of adsorbent. Their sorption properties were compared with the activated carbon from Chemviron (AQ-30). Adsorption of Cr(VI) uptake is in all cases pH-dependent showing a maximum at equilibrium pH values between 2.0 and 3.2, depending on the biomaterial, that correspond to initial pH values of 2.3 units for BC1, 3.0 units for BC2 and 3.2 units for BC3 and AQ-30. Batch equilibrium tests showed that the Cr(VI) removal was fitted with Freundlich isotherm and the adsorption reached equilibrium in 80 min. It was proceeding effectively into a short acid pH interval (2.0–3.2) where processes of Cr(VI) sorption are maximized. It was observed that the maximum adsorption capacity of 11.2 mM of Cr(VI)/g for Ilgın (BC1), 12.4 mM of Cr(VI)/g for Beyşehir (BC2), 7.4 mM of Cr(VI)/g for Ermenek (BC3) and 6.8 mM of Cr(VI)/g for activated carbon (AQ-30) was achieved at pH of 3.0. The rise in temperature caused a slight decrease in the value of the equilibrium constant (Kc) for the sorption of Cr(VI) ion. The Cr(VI) sorption capacities of Beyşehir and Ilgın brown coals were the same. Ermenek brown coals and activated carbon (AQ-30) showed a similar sorption capacity.  相似文献   

12.
Ability of Cr (VI) biosorption with immobilized Trichoderma viride biomass and cell free Ca-alginate beads was studied in the present study. Biosorption efficiency in the powdered fungal biomass entrapped in polymeric matric of calcium alginate compared with cell free calcium alginate beads. Effect of pH, initial metal ion concentration, time and biomass dose on the Cr (VI) removal by immobilized and cell free Ca-alginate beads were also determined. Biosorption of Cr (VI) was pH dependent and the maximum adsorption was observed at pH 2.0. The adsorption equilibrium was reached in 90 min. The maximum adsorption capacity of 16.075 mgg(-1) was observed at dose 0.2 mg in 100 ml of Cr (VI) solution. The high value of kinetics rate constant Kad (3.73 x 10(-2)) with immobilized fungal biomass and (3.75 x 10(-2)) with cell free Ca- alginate beads showed that the sorption of Cr (VI) ions on immobilized biomass and cell free Ca-alginate beads followed pseudo first order kinetics. The experimental results were fitted satisfactory to the Langmuir and Freundlich isotherm models. The hydroxyl (-OH) and amino (-NH) functional groups were responsible in biosorption of Cr (VI) with fungal biomass spp. Trichoderma viride analysed using Fourier Transform Infrared (FTIR) Spectrometer.  相似文献   

13.
The ability of dried anaerobic activated sludge to adsorb phenol and chromium(VI) ions, both singly and in combination, was investigated in a batch system. The effects of initial pH and single- and dual-component concentrations on the equilibrium uptakes were investigated. The optimum initial biosorption pH for both chromium(VI) ions and phenol was determined as 1.0. Multi-component biosorption studies were also performed at this initial pH value. It was observed that the equilibrium uptakes of phenol and chromium(VI) ions were changed due to the presence of other component. Adsorption isotherms were developed for both single- and dual-component systems at pH 1.0, and expressed by the mono- and multi-component Langmuir, Freundlich and Redlich–Peterson adsorption models and model parameters were estimated by the non-linear regression. It was seen that the mono-component adsorption equilibrium data fitted very well to the non-competitive Freundlich and Redlich–Peterson models for both the components while the modified Freundlich model adequately predicted the multi-component adsorption equilibrium data at moderate ranges of concentration. The results suggested that the cells of dried anaerobic activated sludge bacteria may find promising applications for simultaneous removal and separation of phenol and chromium(VI) ions from aqueous effluents.  相似文献   

14.
Cross-linked magnetic chitosan anthranilic acid glutaraldehyde Schiff's base (CAGS) was prepared for adsorption of both As(V) and Cr(VI) ions and their determination by ICP-OES. Prepared cross-linked magnetic CAGS was investigated by means of SEM, FTIR, wide angle X-ray diffraction (WAXRD) and TGA analysis. The adsorption properties of cross-linked magnetic CAGS resin toward both As(V) and Cr(VI) were evaluated. Various factors affecting the uptake behavior such as pH, temperature, contact time, initial concentration of metal ions, effect of other ions and desorption were studied. The equilibrium was achieved after about 110 min and 120 min for As(V) and Cr(VI), respectively at pH = 2. The adsorption kinetics followed the mechanism of the pseudo-second order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 58.48 and 62.42 mg/g for both Cr(VI) and As(V), respectively. Cross-linked magnetic CAGS displayed higher adsorption capacity for Cr(VI). The adsorption capacity of the metal ions increased with increasing temperature under optimum conditions in case of Cr(VI), but decreased in case of As(V). The metal ion-loaded cross-linked magnetic CAGS were regenerated with an efficiency of greater than 88% using 0.2 M sodium hydroxide (NaOH).  相似文献   

15.
Jatropha seed press cake (JPC), a biodeisel waste, was investigated for its use as biosorbent for Cr(VI) removal from wastewater. The acid-pretreated biomass exhibited 1.9-fold higher biosorption efficiency for Cr(VI). The Cr(VI) biosorption efficiency was found to increase with decrease in pH of aqueous medium. The adsorption capacity of biosorbent for Cr(VI) increased with increasing concentration of Cr(VI). The biosorption of Cr(VI) by acid-treated JPC followed a pseudo-second-order kinetics. The results of equilibrium studies showed that the biosorption process fitted the Langmuir isotherm model, with a maximum adsorption capacity of 22.727 mg of Cr(VI)/g of biosorbent at 30°C. The activation energy was found to be 27.114 kJ/mol, suggesting that the adsorption process was mainly a physical process. The important thermodynamic parameters of adsorption (ΔG, ΔH, andΔS) were determined, which indicated that the Cr(VI) sorption by JPC is a spontaneous and endothermic process.  相似文献   

16.
The hexavalent chromium Cr(VI) poses a threat as a hazardous metal and its removal from aquatic environments through biosorption has gained attention as a viable technology of bioremediation. We evaluated the potential use of three green algae (Cladophora glomerata, Enteromorpha intestinalis and Microspora amoena) dry biomass as a biosorbent to remove Cr(VI) from aqueous solutions. The adsorption capacity of the biomass was determined using batch experiments. The adsorption capacity appeared to depend on the pH. The optimum pH with the acid-treated biomass for Cr(VI) biosorption was found to be 2.0 at a constant temperature, 45?°C. Among the three genera studied, C. glomerata recorded a maximum of 66.6% removal from the batch process using 1.0?g dried algal cells/100?ml aqueous solution containing an initial concentration of 20?mg/L chromium at 45?°C and pH 2.0 for 60?min of contact time. Langmuir and Freundlich isotherm equations fitted to the equilibrium data, Freundlich was the better model. Our study showed that C. glomerata dry biomass is a suitable candidate to remove Cr(VI) from aqueous solutions.  相似文献   

17.
Removal and recovery of molybdate from aqueous solution was investigated using ZnCl2 activated carbon developed from coir pith. Studies were conducted to delineate the effects of contact time, adsorbent dose, molybdate concentration, pH and temperature. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 18.9 mg molybdate/g of the adsorbent. Adsorption followed second order kinetics. Studies were performed at different pH values to find out the pH at which maximum adsorption occurred. The pH effect and desorption studies showed that ion exchange and chemisorption mechanism were involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. Effect of foreign ions on adsorption of molybdate has been examined. The results showed that ZnCl2 activated coir pith carbon was effective for the removal and recovery of molybdate from water.  相似文献   

18.
The biosorption of Fe(III), Cr(VI), Pb(II), Cu(II) and Ni(II) ions on Zoogloea ramigera (activated sludge bacterium) and Rhizopus arrhizus (filamentous fungus) has been studied as a function of initial metal ion concentration and temperature. The applicability of the Langmuir model for each metal-microorganism system has been tested at different temperatures. The enthalpy change for the biosorption process has been evaluated by using the Langmuir constant b, related to the energy of adsorption. Thermodynamic parameters indicate the exothermic nature of Cu(II) and Ni(II) biosorption on both microorganisms. Fe(III), Cr(VI) and Pb(II) biosorption is determined to be an endothermic process since increased binding occurs as the temperature is increased in the range 15-45 degrees C.  相似文献   

19.
Coconut coir pith, an agricultural solid waste was used as biosorbent for the removal of chromium(VI) after modification with a cationic surfactant, hexadecyltrimethylammonium bromide. Optimum pH for Cr(VI) adsorption was found to be 2.0. Reduction of Cr(VI) to Cr(III) occurred to a slight extent during the removal. Langmuir, Freundlich and Dubinin Radushkevich (D-R) isotherms were used to model the adsorption equilibrium data and the system followed all the three isotherms. The adsorption capacity of the biosorbent was found to be 76.3 mg g(-1), which is higher or comparable to the adsorption capacity of various adsorbents reported in literature. Kinetic studies showed that the adsorption obeyed second order and Elovich model. Thermodynamic parameters such as delta G0, delta H0 and delta S0 were evaluated, indicating that the overall adsorption process was endothermic and spontaneous. Effects of foreign anions were also examined. The adsorbent was also tested for the removal of Cr(VI) from electroplating effluent.  相似文献   

20.
Biosorption of chromium(VI) on to cone biomass of Pinus sylvestris was studied with variation in the parameters of pH, initial metal ion concentration and agitation speed. The biosorption of Cr(VI) was increased when pH of the solution was decreased from 7.0 to 1.0. The maximum chromium biosorption occurred at 150 rpm agitation. An increase in chromium/biomass ratio caused a decrease in the biosorption efficiency. The adsorption constants were found from the Freundlich isotherm at 25 degrees C. The cone biomass, which is a readily available biosorbent, was found suitable for removing chromium from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号