首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Boye E  Nordström K 《EMBO reports》2003,4(8):757-760
In order to multiply, both prokaryotic and eukaryotic cells go through a series of events that are collectively called the cell cycle. However, DNA replication, mitosis and cell division may also be viewed as having their own, in principle independent, cycles, which are tied together by mechanisms extrinsic to the cell cycle—the checkpoints—that maintain the order of events. We propose that our understanding of cell-cycle regulation is enhanced by viewing each event individually, as an independently regulated process. The nature of the parameters that regulate cell-cycle events is discussed and, in particular, we argue that cell mass is not such a parameter.  相似文献   

5.
6.
Cell-to-cell spread is a fundamental step in the infection cycle of Listeria monocytogenes that strictly depends on the formation of bacteria-induced protrusions. Since Listeria actin tails in the protrusions are tightly associated with the plasma membrane, we hypothesised that membrane-cytoskeleton linkers would be required for initiating and sustaining their formation and the subsequent cell-to-cell spread. We have found that ezrin, a member of the ezrin, radixin and moesin (ERM) family that functions as a key membrane-cytoskeleton linker, accumulates at Listeria protrusions. The ability of Listeria to induce protrusions and effectively spread between adjacent cells depends on the interaction of ERM proteins with both a membrane component such as CD44 and actin filaments. Interfering with either of these interactions or with ERM proteins phosphorylation not only reduces the number of protrusions but also alters their morphology, resulting in the formation of short and collapsed protrusions. As a consequence, Listeria cell-to-cell spread is severely impaired. Thus, ERM proteins are exploited by Listeria to escape the host immune response and to succeed in the development of the infection.  相似文献   

7.
The fact that cells make directed decisions regarding how to use energy, i.e., where to direct intracellular particles or where to move, suggests that energy can be, and is, harnessed in specific ways. It is now well established that the chemical reactions of the cell do not occur in nonorganized soup, but rather in the context of ordered structure. The physical components that make up this ordered structure of the cell are part of the tissue matrix, which consists of the dynamic linkages between the skeletal networks of the nucleus (the nuclear matrix), the cytoplasm (the cytoskeleton), and the extracellular environment (the extracellular matrix). To understand gene function and how the energy of the cell is directed towards accomplishing the tasks directed by DNA (gene expression), a further understanding of how cell structure is tied to cellular energy and function is required. We propose that the structural components of the cell harness cellular energy to direct cell functions by providing a dynamic bridge between thermodynamics and gene expression. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Summary A new technique for transfer of organelles to plant cells is presented. The organelles are removed from the donor protoplast by micromanipulation and microinjected directly into the acceptor cells. First results obtained by this technique for transfer of chloroplasts and fluorescently labelled mitochondria are presented.  相似文献   

9.
Auxin-induced cell expansion in relation to cell wall extensibility   总被引:3,自引:0,他引:3  
Decapitation of 30 mm oat coleoptiles, which are commonly usedfor growth tests, resulted in a decrease in their elastic extensibility(DE) but not in their plastic extensibility (DP). By auxin treatmentunder osmotic stress, old coleoptile (45 mm) cells showed noincrease in subsequent expansion in water, whereas RNA synthesisin these cells was stimulated just as in young ones. Auxin increasedthe DE of young coleoptile cell walls but not that of old ones.Significant increase of DE occurred in only 10 min, and themaximum level of DE was reached in 15 min of the auxin treatment.An antiauxin (2,4,6-trichlorophenoxyacetic acid), mitomycinC and cycloheximide inhibited auxin-induced increases in expansionand DE (or Rex, reversible extensibility) of young coleoptilecells. (Received July 23, 1968; )  相似文献   

10.
Niches regulate lineage-specific stem cell self-renewal versus differentiation in vivo and are composed of supportive cells and extracellular matrix components arranged in a three-dimensional topography of controlled stiffness in the presence of oxygen and growth factor gradients. Mimicking stem cell niches in a defined manner will facilitate production of the large numbers of stem cells needed to realize the promise of regenerative medicine and gene therapy. Progress has been made in mimicking components of the niche. Immobilizing cell-associated Notch ligands increased the self-renewal of hematopoietic (blood) stem cells. Culture on a fibrous scaffold that mimics basement membrane texture increased the expansion of hematopoietic and embryonic stem cells. Finally, researchers have created intricate patterns of cell-binding domains and complex oxygen gradients.  相似文献   

11.
The mitotic spindle is a self-organizing structure that is constructed primarily from microtubules. Among the most important spindle microtubules are those that bind to kinetochores and form the fibers along which chromosomes move. Chemotherapeutics such as taxol and the vinca alkaloids perturb kinetochore—microtubule attachment and disrupt chromosome segregation. This activates a checkpoint pathway that delays cell cycle progression and induces programmed cell death. Recent work has identified at least four mammalian spindle assembly checkpoint proteins.  相似文献   

12.
The development of a complex multicellular organism requires a coordination of growth and cell division under the control of patterning mechanisms. Studies in yeast have pioneered our understanding of the relationship between growth and cell division. In recent years, many of the pathways that regulate growth in multicellular eukaryotes have been identified. This work has revealed interesting and unexpected relationships between mechanisms that regulate growth and the cell cycle machinery.  相似文献   

13.
In order to investigate the immunological mechanism of the chronic phase of streptococcal cell wall (SCW)-induced arthritis in Lewis rats, we compared the SCW-specific T cell response in arthritis-susceptible (female Lewis) and resistant (F344) rats. We present evidence that this T cell response is absent in F344 rats, while it is clearly present in Lewis rats. The T cell response was analyzed both in the spleen and in lymph nodes. In addition, we show, that injection of SCW in the F344 rat induces a general unresponsiveness in this strain: the response to mitogen was severely suppressed in SCW-injected F344 rats and, furthermore, when SCW was coinjected with ovalbumin, the response to ovalbumin was depressed. The fact that priming with ovalbumin alone induces a normal response in the F344 rat to both mitogen and ovalbumin implies that the observed abnormality after SCW priming is not a general immunological defect in this strain. Additionally, we demonstrate that adherent cells of both Lewis and F344 exert negative effects on an in vitro T cell response after injection with SCW, and that F344-adherent cells are more potent in this effect. Removal of OX8-positive cells leads to a restoration of the SCW-specific T cell response in SCW-injected F344 rats, indicating that the expression of this response is controlled by (SCW-specific?) suppressor T cells. Our results provide suggestive evidence for the obligatory role of SCW-specific T cells in the expression of chronic joint inflammation after systemic injection of SCW.  相似文献   

14.
Neurodegenerative diseases are devastating disorders and the demands on their treatment are set to rise in connection with higher disease incidence. Knowledge of the spatiotemporal profile of cellular protein expression during neural differentiation and definition of a set of markers highly specific for targeted neural populations is a key challenge. Intracellular proteins may be utilized as a readout for follow-up transplantation and cell surface proteins may facilitate isolation of the cell subpopulations, while secreted proteins could help unravel intercellular communication and immunomodulation. This review summarizes the potential of proteomics in revealing molecular mechanisms underlying neural differentiation of stem cells and presents novel candidate proteins of neural subpopulations, where understanding of their functionality may accelerate transition to cell replacement therapies.  相似文献   

15.
16.
17.
Conversion of plant cell walls to ethanol constitutes second generation bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation and separation. Ultimately, it is desirable to combine as many of the biochemical steps as possible in a single organism to achieve CBP (consolidated bioprocessing). A commercially ready CBP organism is currently unreported. Production of second generation bioethanol is hindered by economics, particularly in the cost of pretreatment (including waste management and solvent recovery), the cost of saccharification enzymes (particularly exocellulases and endocellulases displaying kcat ~1?s-1 on crystalline cellulose), and the inefficiency of co-fermentation of 5- and 6-carbon monosaccharides (owing in part to redox cofactor imbalances in Saccharomyces cerevisiae).  相似文献   

18.
Linking Rap to cell adhesion   总被引:22,自引:0,他引:22  
The small GTPase Rap1 is involved in several aspects of cell adhesion, including integrin-mediated cell adhesion and cadherin-mediated cell junction formation. Recently, several effector proteins for Rap1 have been identified providing a clear link between Rap1 and actin dynamics. Furthermore, evidence is accumulating that Rap1 functions in the spatial and temporal control of cell polarity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号