首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main goal of ex situ conservation programs is to improve the chances of long term survival of natural populations by founding and managing captive colonies that can serve as a source of individuals for future reintroductions or to reinforce existing populations. The degree in which a captive breeding program has captured the genetic diversity existing in the source wild population has seldom been evaluated. In this study we evaluate the genetic diversity in wild and captive populations of the Iberian wolf, Canis lupus signatus, in order to assess how much genetic diversity is being preserved in the ongoing ex situ conservation program for this subspecies. A sample of domestic dogs was also included in the analysis for comparison. Seventy-four wolves and 135 dogs were genotyped at 13 unlinked microsatellite loci. The results show that genetic diversity in Iberian wolves is comparable in magnitude to that of other wild populations of gray wolf. Both the wild and the captive Iberian wolf populations have a similarly high genetic diversity indicating that no substantial loss of diversity has occurred in the captive-breeding program. The effective number of founders of the program was estimated as ∼ ∼16, suggesting that all founders in the studbook pedigree were genetically independent. Our results emphasize also the genetic divergence between wolves and domestic dogs and indicate that our set of 13 microsatellite loci provide a powerful diagnostic test to distinguish wolves, dogs and their hybrids.  相似文献   

2.
Ex situ conservation plays an increasingly important role in the conservation of endangered species. Molecular genetic markers can be helpful to assess the status of captive breeding programmes. We present the first molecular genetic analysis of the captive population of the Arabian sand cat (Felis margarita harrisoni) using microsatellites. Our data indicates that the captive population of F. m. harrisoni comprises three genetic clusters, which are based on different founder lineages. Genetic diversity was relatively high, the effective population size even exceeded the number of founders. This was presumably caused by subsequently integrating unrelated, genetically diverse founders into the captive population and a careful management based on minimizing kinship. However, we detected an error in the studbook records, which might have led to incestuous matings and underlines the usefulness of molecular evaluations in captive breeding programmes for endangered species.  相似文献   

3.
B. Meier 《Human Evolution》1989,4(2-3):223-229
Extinction of small, closed populations in captivity as well as in the wild is believed to be nearly inevitable, because inbreeding will adversely effect reproductive success, mortality, sex ratio and also the susceptibility to epidemic diseases and environmental stress. An ever increasing number of primate species exist only in small isolated populations, which contain only a part of the original genetic variability. In captive breeding programs research about genetic management strategies is, therefore, of essential importance. In 1980 we imported 9Loris tardigrdus nordicus (4 females, 5 males) from NE-Sri Lanka. The founders came from one natural breeding population. All sexual mature females are breeding. Up to now the colony contains 36 living individuals. The main goal of our long-term genetic management plan was to minimize inbreeding and to preserve the genetic diversity. Therefore, we try to pass the founder bottleneck rapidly by enlarging the population to a desired minimum population size of 25 pairs and to equalize the founder representation within any generation. The need to control the spread of sublethal genes, introduced by one of the founders, conflicts directly with the aim of equalizing the founder representation. A solution of this problem is discussed. To produce a sufficiently large population we intend to give animals to other institutions and to build up an exchange-system for offspring individuals, which should lead to an international studbook.  相似文献   

4.
To conserve endangered species, the maintenance of ex situ captive populations with sustainable genetic diversity is often required, in combination with population viability analysis (PVA). Since 2010, the threatened Itasenpara bitterling Acheilognathus longipinnis lineages in the Kiso region, Japan, have been maintained in ex situ rearing facilities to allow for conservation efforts. In this study, we obtained microsatellite data from DNA extracted from these captive populations to elucidate their genetic diversity and effective population size. The populations of several initial generations indicated a deviation from Hardy–Weinberg equilibrium, probably due to the limited number of extracted founder individuals analyzed. The effective population size of the captive population tended to increase over the course of generations, although the degree of genetic diversity tended to decrease highlighting the concern for the progression of inbreeding. Our prediction based on the PVA suggests that the maintenance of the captive population under the current conditions could lead to extinction of the Itasenpara bitterling in 50 years. In contrast, simultaneously increasing the carrying capacity and individual exchange among populations appears to enhance the effective management of captive Itasenpara bitterling populations.  相似文献   

5.
Kevin Willis 《Zoo biology》1993,12(2):161-172
Whether to incorporate animals with unknown ancestries as founders into scientifically managed captive breeding programs, can be a difficult decision. If the animals are offspring of known founders, their inclusion in the breeding program will result in an increased incidence of inbreeding in the captive population. If the animals are additional founders, excluding them from the breeding program will result in the loss of valuable genetic variation. In general, the practice in scientifically managed captive breeding programs is to exclude animals with unknown ancestries to avoid possible inbreeding. A method of estimating the cost of making an incorrect decision on whether to use animals of unknown ancestry as founders both in terms of lost genetic variation and increased inbreeding is presented. It was determined that the loss of genetic variation resulting from excluding founders is always greater than the loss of genetic variation caused by unequal founder line representation resulting from including related animals, as if they were founders. In addition, the increased rate of accumulation of inbreeding resulting from excluding founders will eventually overcome the initial inbreeding resulting from including related animals. However, in some cases, it will take a substantial number of generations for this to occur, and the benefits of possible lowered future expected inbreeding may never be realized. The decision concerning whether to use animals with unknown ancestry should, therefore, be based on the estimated relative costs of making an error, in terms of both lost genetic variation and expected future inbreeding, rather than on avoiding the immediate possibility of increased inbreeding alone. Two examples using studbook data are given to show how this method can be practically applied to the management of captive populations. © 1993 Wiley-Liss, Inc.  相似文献   

6.
The minimization of kinship in captive populations is usually achieved through the use of pedigree information. However, pedigree knowledge alone is not sufficient if pedigree information is missing, questionable, or when the founders of the captive population are related to one another. If this is the case, higher levels of inbreeding and lower levels of genetic diversity may be present in a captive population than those calculated by pedigree analyses alone. In this study, the genetic status of the critically endangered Mississippi sandhill crane (MSC) (Grus canadensis pulla) was analyzed using studbook data from the U.S. Fish and Wildlife Service managed captive breeding program as well as microsatellite DNA data. These analyses provided information on shared founder genotypes, allowing for refined analysis of genetic variation in the population, and the development of a new DNA-based studbook pedigree that will assist in the genetic management of the MSC population.  相似文献   

7.
Captive‐breeding programs have been widely used in the conservation of imperiled species, but the effects of inbreeding, frequently expressed in traits related to fitness, are nearly unavoidable in small populations with few founders. Following its planned extirpation in the wild, the endangered red wolf (Canis rufus) was preserved in captivity with just 14 founders. In this study, we evaluated the captive red wolf population for relationships between inbreeding and reproductive performance and fitness. Over 30 years of managed breeding, the level of inbreeding in the captive population has increased, and litter size has declined. Inbreeding levels were lower in sire and dam wolves that reproduced than in those that did not reproduce. However, there was no difference in the inbreeding level of actual litters and predicted litters. Litter size was negatively affected by offspring and paternal levels of inbreeding, but the effect of inbreeding on offspring survival was restricted to a positive influence. There was no apparent relationship between inbreeding and method of rearing offspring. The observable effects of inbreeding in the captive red wolf population currently do not appear to be a limiting factor in the conservation of the red wolf population. Additional studies exploring the extent of the effects of inbreeding will be required as inbreeding levels increase in the captive population. Zoo Biol 29:36–49, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
The existence of Oryza glumaepatula is threatened by devastation and, thus, the implementation of conservation strategies is extremely relevant. This study aimed to characterize the genetic variability and estimate population parameters of 30 O. glumaepatula populations from three Brazilian biomes using 10 microsatellite markers. The levels of allelic variability for the SSR loci presented a mean of 10.3 alleles per locus and a value of 0.10 for the average allelic frequency value. The expected total heterozygosity (He) ranged from 0.63 to 0.86. For the 30 populations tested, the mean observed (Ho) and expected heterozygosities (He) were 0.03 and 0.11within population, respectively, indicating an excess of homozygotes resulting from the preferentially self-pollinating reproduction habit. The estimated fixation index ( IS ) was 0.79 that differed significantly from zero, indicating high inbreeding within each O. glumaepatula population. The total inbreeding of the species (IT ) was 0.98 and the genetic diversity indexes among populations, ST and ST, were 0.85 and 0.90, respectively, indicating high genetic variability among them. Thus, especially for populations located in regions threatened with devastation, it is urgent that in situ preservation conditions should be created or that collections be made for ex situ preservation to prevent loss of the species genetic variability.  相似文献   

9.
Ex situ management is an important conservation tool that allows the preservation of biological diversity outside natural habitats while supporting survival in the wild. Captive breeding followed by re‐introduction is a possible approach for endangered species conservation and preservation of genetic variability. The Cayman Turtle Centre Ltd was established in 1968 to market green turtle (Chelonia mydas) meat and other products and replenish wild populations, thought to be locally extirpated, through captive breeding. We evaluated the effects of this re‐introduction programmme using molecular markers (13 microsatellites, 800‐bp D‐loop and simple tandem repeat mitochondrial DNA sequences) from captive breeders (N = 257) and wild nesting females (N = 57) (sampling period: 2013–2015). We divided the captive breeders into three groups: founders (from the original stock), and then two subdivisions of F1 individuals corresponding to two different management strategies, cohort 1995 (“C1995”) and multicohort F1 (“MCF1”). Loss of genetic variability and increased relatedness was observed in the captive stock over time. We found no significant differences in diversity among captive and wild groups, and similar or higher levels of haplotype variability when compared to other natural populations. Using parentage and sibship assignment, we determined that 90% of the wild individuals were related to the captive stock. Our results suggest a strong impact of the re‐introduction programmme on the present recovery of the wild green turtle population nesting in the Cayman Islands. Moreover, genetic relatedness analyses of captive populations are necessary to improve future management actions to maintain genetic diversity in the long term and avoid inbreeding depression.  相似文献   

10.
Information on demographic, genetic, and environmental parameters of wild and captive animal populations has proven to be crucial to conservation programs and strategies. Genetic approaches in conservation programs of Brazilian snakes remain scarce despite their importance for critically endangered species, such as Bothrops insularis, the golden lancehead, which is endemic to Ilha da Queimada Grande, coast of São Paulo State, Brazil. This study aims to (a) characterize the genetic diversity of ex situ and in situ populations of B. insularis using heterologous microsatellites; (b) investigate genetic structure among and within these populations; and (c) provide data for the conservation program of the species. Twelve informative microsatellites obtained from three species of the B. neuwiedi group were used to access genetic diversity indexes of ex situ and in situ populations. Low‐to‐medium genetic diversity parameters were found. Both populations showed low—albeit significant—values of system of mating inbreeding coefficient, whereas only the in situ population showed a significant value of pedigree inbreeding coefficient. Significant values of genetic differentiation indexes suggest a small differentiation between the two populations. Discriminant analysis of principal components (DAPC) recovered five clusters. No geographic relationship was found in the island, suggesting the occurrence of gene flow. Also, our data allowed the establishment of six preferential breeding couples, aiming to minimize inbreeding and elucidate uncertain parental relationships in the captive population. In a conservation perspective, continuous monitoring of both populations is demanded: it involves the incorporation of new individuals from the island into the captive population to avoid inbreeding and to achieve the recommended allelic similarity between the two populations. At last, we recommend that the genetic data support researches as a base to maintain a viable and healthy captive population, highly genetically similar to the in situ one, which is crucial for considering a reintroduction process into the island.  相似文献   

11.
Inbreeding and the loss of genetic diversity may lower fitness and reduce the potential for a population to adapt to changing environments. In small populations, for example in captive populations or populations of endangered species, this can have considerable consequences for their survival. We investigated the effects of inbreeding on infant mortality in the world captive population of bonobos Pan paniscus . Using a combination of studbook data and high-quality pedigree data from genotyped individuals, inbreeding information was available for 142 captive-born individuals. For the determination of paternities that were unresolved in the studbook, nuclear microsatellite DNA was amplified from hair and blood samples using the Great Ape Kit and PowerPlex® 16 System. In total, 54 bonobos (17 offspring and their putative parents) were genotyped at eight tetranucleotide repeat microsatellite loci. Inbreeding coefficients were calculated for each individual for whom paternity was confirmed by either studbook data or DNA analysis. We found significantly higher infant mortality in inbred offspring compared with non-inbred offspring, suggesting that inbreeding reduces infant survival in captive bonobos. In addition, we argue that the total magnitude of inbreeding depression is probably underestimated in this captive population. In conclusion, even though the breeding programme of captive bonobos is aimed at avoiding inbreeding, closely related individuals do occasionally produce offspring that do show inbreeding depression. There is, however, no indication that this currently threatens the long-time survival of the captive population of bonobos.  相似文献   

12.
The endemic Jamaican boa (or “yellow boa”, Epicrates subflavus) is a vulnerable species of the Caribbean biodiversity hotspot whose natural populations greatly declined mainly due to predation by introduced species, human persecution, and habitat destruction. A captive breeding program was initiated in 1976 and rationalized in 2002 by the establishment of a European Endangered Species Program. During the last 30 years, more than 600 offspring, of which 80 are still alive today, have been produced and distributed among European host institutions and privates. Here, using nine nuclear microsatellite loci and a fragment of the mitochondrial cytochrome b gene, we (i) determine the natural population from which the founders originate, (ii) identify parental allocation errors and ambiguities in the studbook, and (iii) assess the genetic diversity and estimate levels of inbreeding of the current captive population based on loss of alleles, variance in reproductive success, and relatedness among individuals. Combining measures of relatedness derived from multilocus genotypes with practical parameters such as age of animals and localization of host institutions, we propose mating groups that would maximize genetic diversity in the captive population of the Jamaican boa. Our analyses provide guidance for a more efficient breeding program that, in turn, could be used as the starting point of a repatriation program to increase the probability of the species long-term survival. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Sinojackia, a member of the family Styracaceae, is an endangered genus endemic to China. The number of populations and population size of Sinojackia have decreased sharply because of habitat fragmentation and destruction. We studied the genetic diversity of extant populations in two different cohorts (adult and seedling) using eight microsatellite markers to investigate the genetic footprints of habitat fragmentation in four recognized Sinojackia spp. and to develop appropriate conservation measures. Data on intrapopulational genetic diversity suggest that Sinojackia populations have maintained relatively high levels of genetic diversity and low levels of genetic differentiation despite severe fragmentation. The high genetic diversity may be explained by the outcrossing mating system and high longevity of Sinojackia spp. The amount of genetic variation is not associated with population size, which was also supported by bottleneck analysis. In the species studied, there was no significant difference in the genetic diversity between the two cohorts analysed. However, inbreeding increased from adult trees to seedling populations, suggesting that the higher proportion of biparental inbreeding in the recent generations of seedlings is the result of restricted current genetic flow caused by habitat fragmentation. Average seed set per population was not significantly correlated with either population size or genetic diversity. Conservation management should aim to monitor inbreeding and outbreeding depression carefully to ensure the in situ and ex situ conservation of Sinojackia spp. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

14.
Measuring levels of population genetic diversity is an important step for assessing the conservation status of rare or endangered plant species and implementing appropriate conservation strategies. Populations of Ribes multiflorum subsp. sandalioticum and R. sardoum, two endangered endemic species from Sardinia, representing the whole genus on the island, were investigated using ISSR and SSR markers to determine levels and structure of genetic variability in their natural populations. Results indicated medium to low genetic diversity at the population level: Nei's gene diversity for ISSR markers ranged from 0.0840 to 0.1316; the expected heterozygosity (HE) for SSR ranged from 0.4281 to 0.7012. In addition, only one remnant population of R. sardoum showed a high level of inbreeding, in accordance with its very small size. Regarding the structure of the six R. sandalioticum populations, both principal coordinates analysis (PCoA) and STRUCTURE analysis of ISSR and SSR data highlighted low population structure, although two populations appeared to be clearly distinct from the others. The genetic pattern of the two taxa associated with their different ecological positions indicated resilience of R. sandalioticum populations in fresh and humid habitats and uncertain future resistance for the residual R. sardoum population in xeric calcareous stands. Hence, this study highlights the importance of an integrated conservation approach (genetic plus in situ and ex situ conservation studies/measures) for activating management programmes in these endemic and threatened taxa that can be considered as crop wild relatives of cultivated Ribes species.  相似文献   

15.
The lesser kudu (Tragelaphus imberbis) has been kept in North American zoological parks since 1930 but has never been a common species in collections. In 1987 this population totaled 28 animals: 15 males and 13 females. A pedigree evaluation in 1987 of the existing population indicated that eight effective founders and one potential founder were represented in the North American herd. Three new potential founders from European captive populations were added to the population in 1987 to increase the number of existing founder lines to 12 animals. As this species is not endangered or threatened in its native habitat, it is not a high priority to qualify for designation as an SSP species. Because of this, the institutions holding lesser kudu in North America decided to join informally and draft a breeding program to better manage this small captive population. This program was designed to minimize inbreeding and equalize genetic representation of founder animals to maximize genetic diversity. It requires a shift in management philosophy to establish stable groups of breeding females at participating institutions while rotating appropriate breeder males through these herds in a controlled manner to ensure minimization of inbreeding and maximization of genetic diversity. It is hoped that this program can serve as a model for the management of other small captive populations of non-SSP species.  相似文献   

16.
Fruit bats of the genus Pteropus are important contributors to ecosystem maintenance on islands through their roles as pollinators and seed dispersers. However, island faunas are the most prone to extinction and there is a real need to assess the possible genetic implications of population reductions in terms of extinction risk. An effective method of ameliorating extinction risk in endangered species is the establishment of captive populations ex situ. The effectiveness of captive breeding programmes may be assessed by comparing the genetic variability of captive colonies to that of wild counterparts. Here, we use polymorphic microsatellite loci to assess genetic variability in wild, critically endangered Rodrigues fruit bats (Pteropus rodricensis, Dobson 1878) and we compare this variability to that in a captive colony. We document remarkable conservation of genetic variability in both the wild and captive populations, despite population declines and founder events. Our results demonstrate that the wild population has withstood the negative effects of population reductions and that captive breeding programmes can fulfil the goals of retaining genetic diversity and limiting inbreeding.  相似文献   

17.
For threatened species with small captive populations, it is advisable to incorporate conservation management strategies that minimize inbreeding in an effort to avoid inbreeding depression. Using multilocus microsatellite genotype data, we found a significant negative relationship between genetic relatedness (inbreeding) and reproductive success (fitness) in a captive population of the critically endangered Black Stilt or KakīHimantopus novaezelandiae. In an effort to avoid inbreeding depression in this iconic New Zealand endemic, we recommend re‐pairing closely related captive birds with less related individuals and pairing new captive birds with distantly related individuals.  相似文献   

18.
The objectives of this study were to assess the level of genetic variability and population differentiation within captive populations of an endangered large mammal, Baird's tapir (Tapirus bairdii). We genotyped 37 captive animals from North American (NA) and Central American (CA) zoos and conservation ranches using six polymorphic microsatellite loci. Standard indices of genetic variability (allelic richness and diversity, and heterozygosity) were estimated and compared between captive populations, and between captive and wild population samples. In addition, we evaluated levels of population differentiation using Weir and Cockerham's version of Wright's F-statistics. The results indicate that the NA and CA captive populations of Baird's tapirs have retained levels of genetic variability similar to that measured in a wild population. However, inbreeding coefficients estimated from the molecular data indicate that the CA captive population is at increased risk of losing genetic variability due to inbreeding. Despite this, estimated levels of population differentiation indicate limited divergence of the CA captive population from the wild population. Careful management appears to have kept inbreeding coefficients low in the NA captive population; however, population differentiation levels indicate that the NA population has experienced increased divergence from wild populations due to a founder effect and isolation. Based on these results, we conclude that intermittent exchanges of Baird's tapirs between the NA and CA captive populations will benefit both populations by increasing genetic variability and effective population size, while reducing inbreeding and divergence from wild populations. Zoo Biol 23:521–531, 2004. © 2004 Wiley-Liss, Inc.  相似文献   

19.
Molecular analysis of genetic diversity amongand within phenotypically similar wild Capsicum annuum var. glabriusculum(chile) populations revealed geneticdifferences among accessions spread over abroad geographic range. These chiles areregionally known as chiltepíns and are a 50metric ton per year wild harvest for the spiceindustry, as well as a genetic resource forcrop improvement. Understanding geneticvariability in this species providesinformation related to conservation efforts. The objective of this research was to surveygenetic diversity among and within an insitu population and ex situ accessionsof chiltepíns. Random AmplifiedPolymorphic DNA (RAPD) molecular markers wereused to study the genetic structure of an in situ population found at the nothernmostrange of this species and ex situaccessions collected from Mexico and Guatemala. Novel genetic variation was found in both thein situ northern disjunct population, aswell as some ex situ accessions, thussupporting conservation of this species viaboth in situ and ex situ strategies The evidence presented here supports effortsto conserve outlier populations via insitu management practices.  相似文献   

20.
Genetic relatedness among founders is a vitalparameter in the management of captivepopulations as kin structure can have asignificant effect on subsequent populationstructure. Methods for inferring relatednessfrom microsatellite markers have all beendeveloped for natural populations; theirapplicability to captive populations withunknown founder origins needs thereforetesting. We used information derived from 14microsatellites in 177 individuals and Quellerand Goodnight's approach, to estimaterelatedness in the captive bearded vulturepopulation and to test the assumption ofunrelated founders. Mean relatedness of knownparent–offspring, full-sib and half-sib pairswithin the captive population were in agreementwith theoretical distributions. Pairwiserelatedness values among the founders had amean of –0.051 (SE ± 0.007) and theirdistribution did only differ marginally fromthe one found in the natural Pyreneanpopulation. A maximum likelihood approach wasused to determine the likelihood of founderpairs to be as closely related as full-sibs orparent–offspring. These results were combinedwith data from 268 bp mitochondrial DNA controlregion sequences and studbook information. Wecould exclude a close relationship among themajority of the 36 successfully reproducingfounders. Our study therefore removesmanagement concerns about hidden problems ofinbreeding and inbreeding depression. Itdemonstrates the applicability of relatednessestimates based on microsatellite allelefrequency data even in captive populations.Furthermore, we verified studbook informationon the origin of two founders from thePyrenees, and show the value of assignmenttests based on microsatellites for deducingfounder origins and their important role infuture monitoring projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号