首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Larvae of the bamboo borer, Omphisa fuscidentalis are in diapause for more than nine months (Singtripop, T., Wanichaneewa, S., Tsuzuki, S., Sakurai, S. 1999. Larval growth and diapause in a tropical moth, Omphisa fuscidentalis Hampson. Zool. Sci. 16, 725-733). To examine the endocrine mechanisms underlying this larval diapause, we assayed the responsiveness of the diapausing larvae to 20-hydroxyecdysone (20E) and a juvenile hormone analogue (JHA: S-methoprene). 20E injection caused the larvae to halt movement, followed by deposition of a pupal cuticle. Topical application of JHA induced pupation in a dose-dependent manner. JHA also induced pupation of the larvae whose brains were removed before JHA application. In those larvae, the prothoracic glands became active and competent to respond to brain extracts within seven days after JHA treatment, and the hemolymph ecdysteroid concentration began to increase 12 days after JHA application. These results indicate that JHA stimulates the prothoracic glands of diapausing Omphisa larvae, terminating larval diapause, in contrast with previous findings that JH inhibits the brain-prothoracic gland axis and thus maintains the larval diapause. Current results therefore suggest a novel regulatory mechanism for larval diapause in this species.  相似文献   

2.
During larval diapause lasting 9 months from September to May, trehalase activity in the midgut of the bamboo borer Omphisa fuscidentalis Hampson (Lepidoptera: Crambidae) was low from December to April, followed by a fourfold increase in May that remained high during the pupal stage in July. An application of juvenile hormone analog (JHA) produced increases in the ecdysteroid titer, while trehalase activity was increased by both JHA and 20-hydroxyecdysone (20E) injection. The trehalase activity in the midgut of diapausing larvae was doubled by incubating the midgut with 20E for 48h. During diapause as well as after JHA application, expression of two ecdysone receptor isoform genes (EcR-A and EcR-B1) in the midgut increased simultaneously with the increase in hemolymph ecdysteroid titer, followed by an increase in trehalase activity. The hemolymph of diapausing larvae contained a trehalase inhibitor and inhibitory activity was high during diapause. After 20E injection, trehalase inhibition decreased as midgut trehalase activity increased. Taken together, at least two factors may participate in the change in midgut trehalase activity: increase in trehalase activity and decrease in trehalase inhibitor activity, both of which may be induced by 20E.  相似文献   

3.
Topical application of methoprene, a juvenile hormone analogue (JHA), induces pupation by activating the prothoracic glands (PGs) in diapausing larvae of the bamboo borer, Omphisa fuscidentalis. To determine the minimum stimulation period for PG activation, we transplanted PGs of JHA-treated larvae (donors) into non-treated larvae (recipients) on successive days after JHA treatment and observed the recipients for pupation. JHA stimulation for 1 day was sufficient to induce pupation. In recipient larvae, the hemolymph ecdysteroid titer increased transiently on day 18 after transplantation and significantly on days 24-28, prior to pupation. Secretory activity of recipient PGs increased transiently on day 16 and days 22-28. Because the recipient PG activity was too low to account for an increased ecdysteroid titer, the JHA-stimulated donor PGs must produce the major part of hemolymph ecdysteroids. In addition, the ecdysteroid produced by the donor PGs might have stimulated the recipient PGs. We examined the possible involvement of two ecdysone receptor (EcR) isoforms, OfEcR-A and OfEcR-B1, in PG activation by JHA, and found that although both isoforms were up-regulated, accompanied by an increased ecdysteroid titer in the hemolymph, the isoform mRNA levels were not altered at all before the increase in PG secretory activity. Thus, EcR expression might not be involved in feedback activation of PGs.  相似文献   

4.
Two insect storage proteins, OfSP1 (75 kDa) and OfSP2 (72 kDa), were purified using three different chromatographies from the hemolymph of Omphisa fuscidentalis larvae during diapause, and their genes were cloned. OfSP1 and OfSP2 concentrations in the hemolymph were high during diapause. During pupation, OfSP1 levels decreased in the male hemolymph and disappeared from the female hemolymph. OfSP1 and OfSP2 mRNA levels in the fat bodies were low during the third instar, but increased greatly during the fourth and fifth larval instars. During diapause, mRNA expression continued at a lower level than during the feeding period. The injection of 20-hydroxyecdysone (20E) into diapausing larvae caused an increase in OfSP1 and OfSP2 mRNA levels 2-3 days post-injection, followed by a decrease in expression until pupation, which occurred 2-4 days thereafter. When larvae were treated with juvenile-hormone analog (JHA), OfSP1 and OfSP2 mRNA levels gradually decreased until the onset of pupation. In Omphisa, OfSP1 and OfSP2 proteins are produced and released by the larval fat bodies in the fourth and fifth-instar larvae, and the proteins accumulate in the hemolymph until the insects enter diapause. OfSP1 may be reabsorbed by the fat bodies at the end of diapause for subsequent re-use during pupation.  相似文献   

5.
The final instar larva of the bamboo borer, Omphisa fuscidentalis, is in diapause for 9 months from September to the following June. Trehalose and ecdysteroid concentrations in hemolymph were measured through the larval diapause period and in the pupal stage. The ecdysteroid concentration remained low until November, followed by a gradual increase to about 30 ng/ml in May. The trehalose concentration remained at levels ranging between 40-50 mM until May, and decreased to an almost undetectable level after pupation. Since a juvenile hormone analogue (JHA), methoprene, is capable of terminating diapause by stimulating larval prothoracic glands, we examined its effects on ecdysteroid and trehalose concentrations in larvae in December and February. The hemolymph ecdysteroid increased more quickly in February than in December, indicating that the sensitivity of the prothoracic glands to JHA increased towards the end of diapause termination. Similarly, hemolymph trehalose in February decreased within a few days after JHA application, while in December the decrease occurred in the third week. Exogenous 20-hydroxyecdysone (20E) caused a decrease in trehalose concentration in a dose-dependent manner. The effective dose of 20E, however, did not change from January until April, implying that the sensitivity of tissue(s) to 20E may not change until the end of diapause. Taken together, our results suggest that the sensitivities of tissues to JH and 20E do not increase simultaneously with the progress of diapause development and that termination of larval diapause is not associated simply with the restoration of hormone deficiencies.  相似文献   

6.
The moth Omphisa fuscidentalis (Lepidoptera, Pyralidae) is a univoltine insect with a larval diapause period lasting up to 9 months. We studied changes in O(2) consumption in conjunction with cytochrome c oxidase activity and cytochrome c oxidase subunit I (cox1) gene expression. O(2) consumption changed within a day, showing a supradian rhythm with a ca.12-h cycle at 25 degrees C. During the first two-thirds of the diapause period, from October to March, O(2) consumption was constant until January and then increased by March. Topical application of methoprene, a juvenile hormone analog (JHA), to diapausing larvae terminated the diapause and was associated with an increase in O(2) consumption rate at diapause termination. In JHA-treated larvae, cytochrome c oxidase activity in fat bodies was high at the beginning of the prepupal period and highest at pupation. cox1 expression in fat bodies displayed a transient peak 8 days after JHA application and peaked in the prepupal period. Taken together, our results show that the break of diapause by JHA is associated with the activation of cox1, bringing about an increase in cytochrome c oxidase activity, followed by an increase in O(2) consumption rate.  相似文献   

7.
During pupal metamorphosis, the anterior silk gland (ASG) of the silkworm, Bombyx mori, undergoes programmed cell death (PCD), which is triggered by 20-hydroxyecdysone (20E). Annexin IX (ANX IX) has been identified as a 20E-inducible gene in dying ASGs, and we show here that its expression is down-regulated in tissues destined to die but not in tissues that survive pupal metamorphosis. ANX IX expression was high in the ASGs during the feeding period, when the ecdysteroid titer was low, and decreased in response to the rising ecdysteroid titer that triggered pupal metamorphosis. Before gut purge, in vitro exposure of the ASGs to 20E levels corresponding to the ecdysteroid concentration present at the time of gut purge caused a decrease in ANX IX messenger RNA levels. Expression profiles of EcR and USP, and the 20E concentration-responses of these genes, indicate the importance of the relative abundance of EcR-A and EcR-B1 isoforms in ANX IX regulation. These results suggest an involvement of ANX IX in the determination of PCD timing by delaying or suppressing the response to the increase in hemolymph ecdysteroid concentration during the prepupal period.  相似文献   

8.
9.
The insect steroid hormone, 20-hydroxyecdysone (20E) triggers the programmed cell death (PCD) of the anterior silk glands (ASGs) of the silkworm, Bombyx mori. We tried to determine the time of commitment to die (death commitment) by examining ASG responses to 20E and juvenile hormone analogue (JHA) in vivo as well as in vitro. The ASGs obtained late on day 6 of the fifth instar completed PCD when cultured with 20E, while the ASGs obtained on day 4 and cultured with 20E did not undergo PCD. The ASGs became competent to respond to 20E at mid-day 5. The ASGs with responsiveness to 20E were not sensitive to JHA, indicating that the ASGs were committed to die before becoming capable of responding to 20E. Topical application of JHA on day 4 suppressed 20E-induced PCD, but that on day 5 failed to do so, indicating that the death commitment might occur between day 4 and 5. We also determined the time of death commitment after allatectomy of the fourth instar larvae, a procedure that induced the precocious PCD. Timed application of JHA and culture of ASGs with 20E in the presence of JHA showed that the ASGs had lost their sensitivity to JHA between 72 and 96 h after allatectomy, i.e. 24-48 h before precocious gut purge in the allatectomized larvae. This result is similar to that obtained in the fifth instar. We conclude that the cellular commitment to die takes place one day before the ASGs become competent to respond to 20E.  相似文献   

10.
Larvae of the bamboo borer, Omphisa fuscidentalis, enter larval diapause in September and pupate in the following June (Singtripop et al., 1999). We examined the changes in the responses of larvae to exogenous 20-hydroxyecdysone (20E) in order to estimate the progress of diapause development. In this respect, we adopted two terms, responsiveness and sensitivity of larvae to 20E. Responsiveness was estimated by the percentage of larvae that pupated, and sensitivity was evaluated by the duration from the day of 20E injection to pupation. The responsiveness of larvae declined gradually from September to November when larvae were least responsive to 20E, and then increased markedly from January to February. This indicates that the intensity of diapause increases from September to November and terminated gradually thereafter. Thus the sequence of events as the larval responses to 20E is characterized by a V-shaped curve. Sensitivity of larvae to 20E was at the same level from September to December, and increased remarkably from December to January. The abrupt increase in the sensitivity occurred one month earlier than the bottom of the V-shaped curve of larval responsiveness, suggesting that the increases in the responsiveness and sensitivity in the latter half of diapause may be brought about by respective mechanisms.  相似文献   

11.
Injection of the juvenile hormone analog (JHA) methoprene into day 3, fifthinstar larvae of Bombyx mori induced developmental arrest. Feeding activity declined, and the larvae remained as larvae for more than 2 weeks, after which they died. After JHA injection, the hemolymph ecdysteroid titer was low, and the prothoracic glands were almost inactive for 7 days. During this period, prothoracic glands were stimulated by prothoracicotropic hormone (PTTH) in vitro, indicating that JHA did not inhibit the competence of the glands to respond to PTTH. When brain-corpora cardiaca-corpora allata complexes were removed from intact fifth-instar larvae on day 4, the prothoracic glands became autonomously active and produced enough ecdysone for pupation. When PTTH injections were given to larvae previously injected with JHA (7 days before), the larvae recovered feeding activity, purged their guts, and pupated. Injections of 20-hydroxyecdysone into larvae that had been injected with JHA 7 days earlier induced larval molting. These results suggest that JHA affects both the brain and the prothoracic gland.  相似文献   

12.
The effects of JHA (ZR-515) application or brain implantation on metamorphosis and adult development were examined in the last instar larvae and pupae of Mamestra brassicae. When JHA was applied to neck-ligated 4- or 5-day-old larvae or to the isolated abdomens of 5-day-old larvae containing implanted prothoracic glands taken from 5-day-old larvae, the insects pupated. Dauer pupae and diapausing pupae treated with JHA showed adult development. By contrast, pupation could not be induced by the application of JHA to 2- or 3-day-old neck-ligated larvae or to the isolated abdomens of 5-day-old larvae containing implanted prothoracic glands from 0-day-old larvae. Implantation of a brain into neck-ligated 3- or 5-day-old larvae (at the beginning of gut emptying and wandering) caused pupation of the host. A similar result was obtained when both a brain and the prothoracic glands from 0- or 5-day-old larvae were implanted into the isolated abdomens of 5-day-old larvae. These results indicate that activation of the prothoracic glands by application of JHA is temporally restricted to the last part of the last larval instar and to the pupal stage, while the activation by prothoracicotropic hormone (PTTH) can occur throughout the last larval instar and the pupal stage. In addition, the implantation of brains or application of JHA to neck-ligated 5-day-old larvae 25 days after ligation seldom induced pupation of the hosts, a result which suggests that larval prothoracic glands maintained under juvenile hormone (JH) or PTTH-free conditions for long periods of time may become insensitive to reactivation by both hormones.  相似文献   

13.
Diapausing larvae of Omphisa fuscidentalis contain soluble and membrane-bound trehalase in the midgut. Soluble trehalase activity accounts for three-fourths of the total trehalase activity in midgut homogenates. The exposure of diapausing larvae to juvenile hormone analog (JHA) induced pupation, accompanied by an increase in soluble trehalase activity at the beginning of the prepupal period. Injection of 20-hydroxyecdysone (20E) increased the level of soluble trehalase activity 5 days postinjection in a dose-dependent manner. In contrast, no increase in membrane-bound trehalase activity was observed under the same conditions. We cloned the cDNAs that encode the soluble and membrane-bound forms of trehalase in O. fuscidentalis trehalase-1 (OfTreh-1) and trehalase-2 (OfTreh-2), respectively. Treh-1 encodes a 581-aa protein while Treh-2 encodes a 648-aa protein with one putative transmembrane domain near the C-terminus. The mRNA expression level of Treh-1 was 27-fold higher than that of Treh-2 in diapausing larval midgut. Following the exposure of diapausing larvae to JHA, Treh-1 mRNA expression increased gradually until the prepupal period whereupon it increased dramatically; in contrast, the mRNA expression of Treh-2 remained at its initial level. Similarly, 20E upregulated Treh-1 expression but had no effect on Treh-2 expression. Taken together, these results suggest that an increase in the soluble trehalase activity at pupation is caused by upregulation of Treh-1 gene. Moreover, membrane-bound trehalase does not appear to be involved in the dynamic changes in the hemolymph trehalose concentration that occur during the larval-pupal transformation.  相似文献   

14.
PCR techniques were used to clone and identify cDNAs for ecdysone receptor A and B1 (EcR-A and EcR-B1) isoforms from the rice stem borer, Chilo suppressalis. They differ only in the N-terminal A/B regions and show high sequence identities to other insects' EcRs. At the wandering stage, EcR-B1 mRNA was expressed more abundantly in the midgut than in the epidermis and fat body, whereas expression levels of EcR-A mRNA were similar in the three tissues. In the epidermis of the last instar larvae, the maximal mRNA expression of both EcR-A and EcR-B1 was observed from the wandering to prepupal stages prior to the peak of ecdysteroid titer in the hemolymph. In gel mobility shift assays, in vitro translated C. suppressalis EcR-B1 (CsEcR-B1) and Bombyx mori ultraspiracle (BmUSP) proteins bound to the Pal 1 and Drosophila melanogaster hsp27 ecdysone response element as a heterodimer. These results indicate that the cDNAs isolated here encode functional ecdysone receptors.  相似文献   

15.
The hormonal control of the facultative diapause of the codling moth has been investigated. The diapause can be divided into 4 phases or periods: (1) diapause induction by short-day conditions (SD) in young larvae, (2) initiation of the diapause in the early last larval instar by a high titre of juvenile hormone, (3) onset and maintenance of diapause with inactivity of the neuroendocrine system, as evidenced by the results of neck-ligation experiments, (4)termination of diapause by the production of ecdysteroid.Diapause-induced larvae pupated after spinning the cocoon, if the state of induction was changed by injection with the anti-juvenile hormone precocene II at the beginning of the last larval instar and subsequent results of neck-ligation experiments, (4) termination of diapause by the production of ecdysteroid. treated with juvenile hormone during the first 1.5 days after the last larval moult and subsequently reared under SD. Under LD, continuous application of juvenile hormone during the last larval instar and after spinning did not prevent the insects from moulting to either a supernumerary larva, a pupa or a larval-pupal intermediate. Termination of diapause, i.e. pupation, was achieved by injecting diapausing larvae with 20-hydroxyecdysone. Although juvenile hormone was found to have a prothoractropic effect in diapausing larvae, no pupal moult could be induced by the application of the hormone. Contrary to the hormonal situation before pupation of nondiapausing larvae, no juvenile hormone could be detected before or during the pupation of larvae after diapause.  相似文献   

16.
The larvae of Sesamia nonagrioides (Lepidoptera: Noctuidae) grown at 25 degrees C and long photoperiod (16:8h light:dark) pupate in the 5th or 6th (mostly) larval instar, while the larvae reared under a short photoperiod (12:12h) enter diapause during which they consume some food and undergo up to 12 (usually 3-4) stationary larval molts. Diapause programming includes an increase of juvenile hormone (JH) titer in the hemolymph from about 20 to 50 nM in the 4th and 5th instar larvae (titer in earlier instars was not measured). JH I, II, and III are present in approximate ratio 1-2:10:1. The JH titer drops to zero before pupation but remains around 20 nM during diapause. Perfect extra larval molts associated with a body weight increase can be induced in the non-diapausing larvae with a JH analogue (JHA). The weight rise is due to accumulation of reserves and not to a general body growth. The timing of extra molts is similar to the molting pattern of the diapausing larvae only when JHA is present since early larval instars. In the diapausing larvae, JHA application affects neither molting periodicity nor the body weight. It is concluded that (1) Increased JH titer in early larval instars is a part of diapause programming; (2) The extension of larval stage in the diapausing larvae, but not the timing pattern of extra molts, is due to continuously high JH titer; (3) The diapause program includes low food intake, maintenance of a certain body weight, and periodic larval molts.  相似文献   

17.
The mechanisms underlying larval diapause in the wax moth (Galleria mellonella) is one of the most throughly studied aspects. At the low temperature of 18 degrees C, the last instar larvae did not pupate but transferred to 30 degrees C they initiated development and pupation in a circadian manner. Different types of surgical manipulations including head-ligation, nerve cord-severance, implantation of the brain, prothoracic glands, accompanied with ecdysteroid titre measurements indicated that diapausing arrest of larval development at 18 degrees C might be due to the nervous inhibition of their prothoracic glands.  相似文献   

18.
The development of the Mediterranean corn borer, Sesamia nonagrioides, under long-day (LD) photoperiod is associated with juvenile hormone (JH) decline and pupation in the 5th or 6th larval instar. The larvae grown under short-day (SD) conditions maintain a moderate JH titer and enter diapause during which they undergo several extra larval molts. Both types of larvae exhibit similar levels of juvenile hormone esterase (JHE) activity that increases in each instar during the period of low ecdysteroid titer and drops when the titer rises to a molt-inducing peak. A suppression of JHE activity within 24h after application of an ecdysteroid agonist suggests that the drop of activity is a rapid and possibly direct response to ecdysteroids or their agonist. Esterase inhibitor 3-octylthio-1,1,1-trifluoro-2-propanone (OTFP) suppressed more than 98% of the JHE activity without affecting pupation timing and adult development. The data indicate that JHE is not crucial for the switch between larval development, diapause, and metamorphosis in S. nonagrioides.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号