首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Centromeric chromatin containing the histone H3 variant centromere protein A (CENP-A) directs kinetochore assembly through a hierarchical binding of CENPs, starting with CENP-C and CENP-T. Centromeres are also the chromosomal regions where cohesion, mediated by cohesin, is most prominently maintained in mitosis. While most cohesin dissociates from chromosome arms in prophase, Shugoshin 1 (Sgo1) prevents this process at centromeres. Centromeric localization of Sgo1 depends on histone H2A phosphorylation by the kinase Bub1, but whether additional interactions with kinetochore components are required for Sgo1 recruitment is unclear. Using the Xenopus egg cell-free system, we here show that both CENP-C and CENP-T can independently drive centromeric accumulation of Sgo1 through recruitment of Bub1 to the KNL1, MIS12, NDC80 (KMN) network. The spindle assembly checkpoint (SAC) kinase Mps1 is also required for this pathway even in the absence of checkpoint signaling. Sgo1 recruitment is abolished in chromosomes lacking kinetochore components other than CENP-A. However, forced targeting of Bub1 to centromeres is sufficient to restore Sgo1 localization under this condition.  相似文献   

2.
The conserved mitotic kinase Bub1 performs multiple functions that are only partially characterized. Besides its role in the spindle assembly checkpoint and chromosome alignment, Bub1 is crucial for the kinetochore recruitment of multiple proteins, among them Sgo1. Both Bub1 and Sgo1 are dispensable for growth of haploid and diploid budding yeast, but they become essential in cells with higher ploidy. We find that overexpression of SGO1 partially corrects the chromosome segregation defect of bub1Δ haploid cells and restores viability to bub1Δ tetraploid cells. Using an unbiased high-copy suppressor screen, we identified two members of the chromosomal passenger complex (CPC), BIR1 (survivin) and SLI15 (INCENP, inner centromere protein), as suppressors of the growth defect of both bub1Δ and sgo1Δ tetraploids, suggesting that these mutants die due to defects in chromosome biorientation. Overexpression of BIR1 or SLI15 also complements the benomyl sensitivity of haploid bub1Δ and sgo1Δ cells. Mutants lacking SGO1 fail to biorient sister chromatids attached to the same spindle pole (syntelic attachment) after nocodazole treatment. Moreover, the sgo1Δ cells accumulate syntelic attachments in unperturbed mitoses, a defect that is partially corrected by BIR1 or SLI15 overexpression. We show that in budding yeast neither Bub1 nor Sgo1 is required for CPC localization or affects Aurora B activity. Instead we identify Sgo1 as a possible partner of Mps1, a mitotic kinase suggested to have an Aurora B-independent function in establishment of biorientation. We found that Sgo1 overexpression rescues defects caused by metaphase inactivation of Mps1 and that Mps1 is required for Sgo1 localization to the kinetochore. We propose that Bub1, Sgo1, and Mps1 facilitate chromosome biorientation independently of the Aurora B-mediated pathway at the budding yeast kinetochore and that both pathways are required for the efficient turnover of syntelic attachments.  相似文献   

3.
Fission yeast has two members of the Shugoshin family, Sgo1 and Sgo2. Although Sgo1 has clearly been established as a protector of centromere cohesion in meiosis I, the roles of Sgo2 remain elusive. Here we show that Sgo2 is required to ensure proper chromosome biorientation upon recovery from a prolonged spindle checkpoint arrest. Consistent with this, Sgo2 is essential for maintaining the Passenger proteins on centromeres upon checkpoint activation. Interestingly, lack of Sgo2 has a more penetrant effect on the localization of Survivin than on the two other Passenger proteins INCENP and Aurora B, and the Survivin-INCENP complex but not the INCENP-Aurora B complex is destabilized in the absence of Sgo2. Finally we show that the conserved C-terminus of Sgo2 is crucial to maintain Sgo2 and Passenger proteins localization on centromeres upon prolonged checkpoint activation. Taken together, our results demonstrate that Sgo2 is important for chromosome biorientation and that it controls docking of the Passenger proteins on chromosomes in early mitotic cells.  相似文献   

4.
A minor fraction of cohesin complexes at chromosome arms is not removed by the prophase pathway, and maintained until metaphase and enriched at centromeres. Sgo1 localizes to chromosome arms from prophase to metaphase, and is indispensable for removing cohesin complexes from chromosome arms. However, it has not been established how the chromosome arm localization of Sgo1 leads to the establishment of cohesion on chromosomes. Here, we report that Aurora B kinase interacts with and phosphorylates Sgo1 in vitro and in vivo. Furthermore, the phosphorylation of Sgol by Aurora B kinase regulated the distribution of Sgo1 between centromeres and chromosome arms, and the expression of Aurora B kinase-dead mutants of Sgo1 caused mislocalization from centromeres to chromosome arms. These results suggest Aurora B kinase directly regulates the subcellular distribution of Sgo1 to facilitate the accurate separation of mitotic chromosomes  相似文献   

5.
Haspin phosphorylates histone H3 at Thr3 (H3T3ph) during mitosis [1, 2], providing a chromatin binding site for the chromosomal passenger complex (CPC) at centromeres to regulate chromosome segregation [3-5]. H3T3ph becomes increasingly focused at inner centromeres during prometaphase [1, 2], but little is known about how its level or location and the consequent chromosomal localization of the CPC are regulated. In addition, CPC binding to shugoshin proteins contributes to centromeric Aurora B localization [5, 6]. Recruitment of the shugoshins to centromeres requires the phosphorylation of histone H2A at Thr120 (H2AT120ph) by the kinetochore kinase Bub1 [7], but the molecular basis for the collaboration of this pathway with H3T3ph has been unclear. Here, we show that Aurora B phosphorylates Haspin to promote generation of H3T3ph and that Aurora B kinase activity is required for normal chromosomal localization of the CPC, indicating an intimate linkage between Aurora B and Haspin functions in mitosis. We propose that Aurora B activity triggers a CPC-Haspin-H3T3ph feedback loop that promotes generation of H3T3ph on chromatin. We also provide evidence that the Bub1-shugoshin-CPC pathway supplies a signal that boosts the CPC-Haspin-H3T3ph feedback loop specifically at centromeres to produce the well-known accumulation of the CPC in these regions.  相似文献   

6.
The spatial and temporal control of histone modifications is crucial for precise regulation of chromatin structure and function. Here we report that phosphorylation of H2A at threonine 119 (T119) is enriched at centromere regions in Drosophila mitosis. We found that the Aurora B kinase complex is essential for this phosphorylation at centromeres, while Polo kinase is required to down-regulate H2A phosphorylation on chromosome arms in mitosis. Cyclin B degradation triggers loss of centromeric H2A phosphorylation at anaphase onset. Epistasis analysis indicated that Polo functions upstream of the H2A kinase NHK-1 but parallel to Aurora B. Therefore, multiple mitotic kinases work together to specify the spatial and temporal pattern of H2A T119 phosphorylation.  相似文献   

7.
By phosphorylating Thr3 of histone H3, Haspin promotes centromeric recruitment of the chromosome passenger complex (CPC) during mitosis. Aurora B kinase, a CPC subunit, sustains chromosome bi-orientation and the spindle assembly checkpoint (SAC). Here, we characterize the small molecule 5-iodotubercidin (5-ITu) as a potent Haspin inhibitor. In vitro, 5-ITu potently inhibited Haspin but not Aurora B. Consistently, 5-ITu counteracted the centromeric localization of the CPC without affecting the bulk of Aurora B activity in HeLa cells. Mislocalization of Aurora B correlated with dephosphorylation of CENP-A and Hec1 and SAC override at high nocodazole concentrations. 5-ITu also impaired kinetochore recruitment of Bub1 and BubR1 kinases, and this effect was reversed by concomitant inhibition of phosphatase activity. Forcing localization of Aurora B to centromeres in 5-ITu also restored Bub1 and BubR1 localization but failed to rescue the SAC override. This result suggests that a target of 5-ITu, possibly Haspin itself, may further contribute to SAC signaling downstream of Aurora B.  相似文献   

8.
Maintenance of chromosomal stability relies on coordination between various processes that are critical for proper chromosome segregation in mitosis. Here we show that monopolar spindle 1 (Mps1) kinase, which is essential for the mitotic checkpoint, also controls correction of improper chromosome attachments. We report that Borealin/DasraB, a member of the complex that regulates the Aurora B kinase, is directly phosphorylated by Mps1 on residues that are crucial for Aurora B activity and chromosome alignment. As a result, cells lacking Mps1 kinase activity fail to efficiently align chromosomes due to impaired Aurora B function at centromeres, leaving improper attachments uncorrected. Strikingly, Borealin/DasraB bearing phosphomimetic mutations restores Aurora B activity and alignment in Mps1-depleted cells. Mps1 thus coordinates attachment error correction and checkpoint signaling, two crucial responses to unproductive chromosome attachments.  相似文献   

9.
Aurora B is a mitotic protein kinase that phosphorylates histone H3, behaves as a chromosomal passenger protein, and functions in cytokinesis. We investigated a role for Aurora B with respect to human centromere protein A (CENP-A), a centromeric histone H3 homologue. Aurora B concentrates at centromeres in early G2, associates with histone H3 and centromeres at the times when histone H3 and CENP-A are phosphorylated, and phosphorylates histone H3 and CENP-A in vitro at a similar target serine residue. Dominant negative phosphorylation site mutants of CENP-A result in a delay at the terminal stage of cytokinesis (cell separation). The only molecular defects detected in analysis of 22 chromosomal, spindle, and regulatory proteins were disruptions in localization of inner centromere protein (INCENP), Aurora B, and a putative partner phosphatase, PP1gamma1. Our data support a model where CENP-A phosphorylation is involved in regulating Aurora B, INCENP, and PP1gamma1 targeting within the cell. These experiments identify an unexpected role for the kinetochore in regulation of cytokinesis.  相似文献   

10.
Condensins I and II in vertebrates are essential ATP-dependent complexes necessary for chromosome condensation in mitosis. Condensins depletion is known to perturb structure and function of centromeres, however the mechanism of this functional link remains elusive. Depletion of condensin activity is now shown to result in a significant loss of loading of CENP-A, the histone H3 variant found at active centromeres and the proposed epigenetic mark of centromere identity. Absence of condensins and/or CENP-A insufficiency produced a specific kinetochore defect, such that a functional mitotic checkpoint cannot prevent chromosome missegregation resulting from improper attachment of sister kinetochores to spindle microtubules. Spindle microtubule-dependent deformation of both inner kinetochores and the HEC1/Ndc80 microtubule-capturing module, then results in kinetochore separation from the Aurora B pool and ensuing reduced kinase activity at centromeres. Moreover, recovery from mitosis-inhibition by monastrol revealed a high incidence of merotelic attachment that was nearly identical with condensin depletion, Aurora B inactivation, or both, indicating that the Aurora B dysfunction is the key defect leading to chromosome missegregation in condensin-depleted cells. Thus, beyond a requirement for global chromosome condensation, condensins play a pivotal role in centromere assembly, proper spatial positioning of microtubule-capturing modules and positioning complexes of the inner centromere versus kinetochore plates.  相似文献   

11.
Shugoshin (Sgo) proteins constitute a conserved protein family defined as centromeric protectors of Rec8-containing cohesin complexes in meiosis . In vertebrate mitosis, Scc1/Rad21-containing cohesin complexes are also protected at centromeres because arm cohesin, but not centromeric cohesin, is largely dissociated in pro- and prometaphase . The dissociation process is dependent on the activity of polo-like kinase (Plk1) and partly dependent on Aurora B . Recently, it has been demonstrated that vertebrate shugoshin is required for preserving centromeric cohesion during mitosis ; however, it was not addressed whether human shugoshin protects cohesin itself. Here, we show that the persistence of human Scc1 at centromeres in mitosis is indeed dependent on human Sgo1. In fission yeast, Sgo localization depends on Bub1, a conserved spindle checkpoint protein, which is enigmatically also required for chromosome congression during prometaphase in vertebrate cells. We demonstrate that human Sgo1 fails to localize at centromeres in Bub1-repressed cells, and centromeric cohesion is significantly loosened. Remarkably, in these cells, Sgo1 relocates to chromosomes all along their length and provokes ectopic protection from dissociation of Scc1 on chromosome arms. These results reveal a hitherto concealed role for human Bub1 in defining the persistent cohesion site of mitotic chromosomes.  相似文献   

12.
During mitosis, the chromosomal passenger complex (CPC) comprising the Aurora B kinase, INCENP, survivin and borealin is essential for correcting non-bipolar chromosome attachments and for cytokinesis. In addition, the CPC might fullfil a role in the mitotic spindle assembly checkpoint (SAC), but this activity might be related to its role in correcting non-bipolar chromosome attachments. Here, we demonstrate that treatment of mitotic cells with the antibiotic actinomycin D causes a displacement of an intact and active CPC from centromeres onto chromosome arms, which results in chromosome misalignment, cytokinesis failure and SAC override, but still preserves histone H3 phosphorylation on chromosome arms. This surprising and unique scenario allows the reconstitution of endogenous Aurora B at centromeres/inner kinetochores by expressing a Cenp-B-INCENP fusion protein. We find that although the selective recruitment of endogenous Aurora B to centromeres/inner kinetochores is not sufficient to restore chromosome alignment and cytokinesis, it can restore Cenp-A phosphorylation at kinetochores, BubR1 recruitment to kinetochores and SAC activity after spindle disruption. These results indicate that INCENP-Aurora B localized at centromeres/inner kinetochores is sufficient to mediate SAC activity upon spindle disruption.  相似文献   

13.
Heterochromatin protein 1α (HP1α) is involved in regulation of chromatin plasticity, DNA damage repair, and centromere dynamics. HP1α detects histone dimethylation and trimethylation of Lys-9 via its chromodomain. HP1α localizes to heterochromatin in interphase cells but is liberated from chromosomal arms at the onset of mitosis. However, the structural determinants required for HP1α localization in interphase and the regulation of HP1α dynamics have remained elusive. Here we show that centromeric localization of HP1α depends on histone H3 Lys-9 trimethyltransferase SUV39H1 activity in interphase but not in mitotic cells. Surprisingly, HP1α liberates from chromosome arms in early mitosis. To test the role of this dissociation, we engineered an HP1α construct that persistently localizes to chromosome arms. Interestingly, persistent localization of HP1α to chromosome arms perturbs accurate kinetochore-microtubule attachment due to an aberrant distribution of chromosome passenger complex and Sgo1 from centromeres to chromosome arms that prevents resolution of sister chromatids. Further analyses showed that Mis14 and perhaps other PXVXL-containing proteins are involved in directing localization of HP1α to the centromere in mitosis. Taken together, our data suggest a model in which spatiotemporal dynamics of HP1α localization to centromere is governed by two distinct structural determinants. These findings reveal a previously unrecognized but essential link between HP1α-interacting molecular dynamics and chromosome plasticity in promoting accurate cell division.  相似文献   

14.
Salic A  Waters JC  Mitchison TJ 《Cell》2004,118(5):567-578
Drosophila MEI-S332 and fungal Sgo1 genes are essential for sister centromere cohesion in meiosis I. We demonstrate that the related vertebrate Sgo localizes to kinetochores and is required to prevent premature sister centromere separation in mitosis, thus providing an explanation for the differential cohesion observed between the arms and the centromeres of mitotic sister chromatids. Sgo is degraded by the anaphase-promoting complex, allowing the separation of sister centromeres in anaphase. Intriguingly, we show that Sgo interacts strongly with microtubules in vitro and that it regulates kinetochore microtubule stability in vivo, consistent with a direct microtubule interaction. Sgo is thus critical for mitotic progression and chromosome segregation and provides an unexpected link between sister centromere cohesion and microtubule interactions at kinetochores.  相似文献   

15.
In vertebrate mitosis, cohesion between sister chromatids is lost in two stages. In prophase and prometaphase, cohesin release from chromosome arms occurs under the control of Polo-like kinase 1 and Aurora B, while Shugoshin is thought to prevent removal of centromeric cohesin until anaphase. The regulatory enzymes that act to sustain centromeric cohesion are incompletely described, however. Haspin/Gsg2 is a histone H3 threonine-3 kinase required for normal mitosis. We report here that both H3 threonine-3 phosphorylation and cohesin are located at inner centromeres. Haspin depletion disrupts cohesin binding and sister chromatid association in mitosis, preventing normal chromosome alignment and activating the spindle assembly checkpoint, leading to arrest in a prometaphase-like state. Overexpression of Haspin hinders cohesin release and stabilizes arm cohesion. We conclude that Haspin is required to maintain centromeric cohesion during mitosis. We also suggest that Aurora B regulates cohesin removal through its effect on the localization of Shugoshin.  相似文献   

16.
Tang Z  Shu H  Qi W  Mahmood NA  Mumby MC  Yu H 《Developmental cell》2006,10(5):575-585
Loss of sister-chromatid cohesion triggers chromosome segregation in mitosis and occurs through two mechanisms in vertebrate cells: (1) phosphorylation and removal of cohesin from chromosome arms by mitotic kinases, including Plk1, during prophase, and (2) cleavage of centromeric cohesin by separase at the metaphase-anaphase transition. Bub1 and the MEI-S332/Shugoshin (Sgo1) family of proteins protect centromeric cohesin from mitotic kinases during prophase. We show that human Sgo1 binds to protein phosphatase 2A (PP2A). PP2A localizes to centromeres in a Bub1-dependent manner. The Sgo1-PP2A interaction is required for centromeric localization of Sgo1 and proper chromosome segregation in human cells. Depletion of Plk1 by RNA interference (RNAi) restores centromeric localization of Sgo1 and prevents chromosome missegregation in cells depleted of PP2A_Aalpha. Our findings suggest that Bub1 targets PP2A to centromeres, which in turn maintains Sgo1 at centromeres by counteracting Plk1-mediated chromosome removal of Sgo1.  相似文献   

17.
The Aurora B kinase coordinates kinetochore–microtubule attachments with spindle checkpoint signaling on each mitotic chromosome. We find that EB1, a microtubule plus end–tracking protein, is required to enrich Aurora B at inner centromeres in a microtubule-dependent manner. This regulates phosphorylation of both kinetochore and chromatin substrates. EB1 regulates the histone phosphorylation marks (histone H2A phospho-Thr120 and histone H3 phospho-Thr3) that localize Aurora B. The chromosomal passenger complex containing Aurora B can be found on a subset of spindle microtubules that exist near prometaphase kinetochores, known as preformed K-fibers (kinetochore fibers). Our data suggest that EB1 enables the spindle microtubules to regulate the phosphorylation of kinetochores through recruitment of the Aurora B kinase.  相似文献   

18.
The relationship between the nucleolus and the centromere, although documented, remains one of the most elusive aspects of centromere assembly and maintenance. Here we identify the nucleolar protein, Modulo, in complex with CAL1, a factor essential for the centromeric deposition of the centromere-specific histone H3 variant, CID, in Drosophila. Notably, CAL1 localizes to both centromeres and the nucleolus. Depletion of Modulo, by RNAi, results in defective recruitment of newly-synthesized CAL1 at the centromere. Furthermore, depletion of Modulo negatively affects levels of CID at the centromere and results in chromosome missegregation. Interestingly, examination of Modulo localization during mitosis reveals it localizes to the chromosome periphery but not the centromere. Combined, the data suggest that rather than a direct regulatory role at the centromere, it is the nucleolar function of modulo which is regulating the assembly of the centromere by directing the localization of CAL1. We propose that a functional link between the nucleolus and centromere assembly exists in Drosophila, which is regulated by Modulo.  相似文献   

19.
Active centromeres are marked by nucleosomes assembled with CENP-A, a centromere-specific histone H3 variant. The CENP-A centromere targeting domain (CATD), comprised of loop 1 and the alpha2 helix within the histone fold, is sufficient to target histone H3 to centromeres and to generate the same conformational rigidity to the initial subnucleosomal heterotetramer with histone H4 as does CENP-A. We now show in human cells and in yeast that depletion of CENP-A is lethal, but recruitment of normal levels of kinetochore proteins, centromere-generated mitotic checkpoint signaling, chromosome segregation, and viability can be rescued by histone H3 carrying the CATD. These data offer direct support for centromere identity maintained by a unique nucleosome that serves to distinguish the centromere from the rest of the chromosome.  相似文献   

20.
The attachment of sister kinetochores to microtubules from opposite spindle poles is essential for faithful chromosome segregation. Kinetochore assembly requires centromere-specific nucleosomes containing the histone H3 variant CenH3. However, the functional roles of the canonical histones (H2A, H2B, H3, and H4) in chromosome segregation remain elusive. Using a library of histone point mutants in Saccharomyces cerevisiae, 24 histone residues that conferred sensitivity to the microtubule-depolymerizing drugs thiabendazole (TBZ) and benomyl were identified. Twenty-three of these mutations were clustered at three spatially separated nucleosomal regions designated TBS-I, -II, and -III (TBZ/benomyl-sensitive regions I-III). Elevation of mono-polar attachment induced by prior nocodazole treatment was observed in H2A-I112A (TBS-I), H2A-E57A (TBS-II), and H4-L97A (TBS-III) cells. Severe impairment of the centromere localization of Sgo1, a key modulator of chromosome bi-orientation, occurred in H2A-I112A and H2A-E57A cells. In addition, the pericentromeric localization of Htz1, the histone H2A variant, was impaired in H4-L97A cells. These results suggest that the spatially separated nucleosomal regions, TBS-I and -II, are necessary for Sgo1-mediated chromosome bi-orientation and that TBS-III is required for Htz1 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号