首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
These experiments were performed to determine the effects ofreducing Ca2+ influx(Cain) onK+ currents(IK) inmyocytes from rat small mesenteric arteries by1) adding externalCd2+ or2) lowering externalCa2+ to 0.2 mM. When measured froma holding potential (HP) of 20 mV(IK20),decreasing Cain decreasedIK at voltageswhere it was active (>0 mV). When measured from a HP of 60 mV(IK60),decreasing Cain increasedIK at voltagesbetween 30 and +20 mV but decreased IK at voltagesabove +40 mV. Difference currents(IK) weredetermined by digital subtraction of currents recorded under controlconditions from those obtained whenCain was decreased. At testvoltages up to 0 mV,IK60 exhibitedkinetics similar to controlIK60, with rapidactivation to a peak followed by slow inactivation. At 0 mV, peakIK60 averaged75 ± 13 pA (n = 8) withCd2+ and 120 ± 20 pA(n = 9) with lowCa2+ concentration. At testvoltages from 0 to +60 mV,IK60 always had an early positive peak phase, but its apparent "inactivation" increased with voltage and its steady value became negative above +20mV. At +60 mV, the initial peakIK60 averaged115 ± 18 pA with Cd2+ and 187 ± 34 pA with low Ca2+. With 10 mM pipette BAPTA, Cd2+ produced asmall inhibition ofIK20 but stillincreased IK60 between 30 and +10 mV. InCa2+-free external solution,Cd2+ only decreased bothIK20 andIK60. In thepresence of iberiotoxin (100 nM) to inhibitCa2+-activatedK+ channels(KCa),Cd2+ increasedIK60 at allvoltages positive to 30 mV while BAY K 8644 (1 µM) decreasedIK60. Theseresults suggest that Cain, through L-type Ca2+ channels and perhapsother pathways, increases KCa(i.e., IK20) and decreases voltage-dependent K+currents in this tissue. This effect could contribute to membrane depolarization and force maintenance.

  相似文献   

2.
The role of the Na+ pump2-subunit in Ca2+ signaling was examined inprimary cultured astrocytes from wild-type(2+/+ = WT) mouse fetuses and thosewith a null mutation in one [2+/ = heterozygote (Het)] or both [2/ = knockout (KO)] 2 genes. Na+ pump catalytic() subunit expression was measured by immunoblot; cytosol[Na+] ([Na+]cyt) and[Ca2+] ([Ca2+]cyt) weremeasured with sodium-binding benzofuran isophthalate and fura 2 byusing digital imaging. Astrocytes express Na+ pumpswith both 1- (80% of total ) and2- (20% of total ) subunits. Het astrocytesexpress 50% of normal 2; those from KO express none.Expression of 1 is normal in both Het and KO cells.Resting [Na+]cyt = 6.5 mM in WT, 6.8 mMin Het (P > 0.05 vs. WT), and 8.0 mM in KO cells(P < 0.001); 500 nM ouabain (inhibits only2) equalized [Na+]cyt at 8 mMin all three cell types. Resting[Ca2+]cyt = 132 nM in WT, 162 nM in Het,and 196 nM in KO cells (both P < 0.001 vs. WT).Cyclopiazonic acid (CPA), which inhibits endoplasmic reticulum (ER)Ca2+ pumps and unloads the ER, induces transient (inCa2+-free media) or sustained (in Ca2+-repletemedia) elevation of [Ca2+]cyt. TheseCa2+ responses to 10 µM CPA were augmented in Het as wellas KO cells. When CPA was applied in Ca2+-free media, thereintroduction of Ca2+ induced significantly largertransient rises in [Ca2+]cyt (due toCa2+ entry through store-operated channels) in Het and KOcells than in WT cells. These results correlate with published evidencethat 2 Na+ pumps andNa+/Ca2+ exchangers are confined to plasmamembrane microdomains that overlie the ER. The data suggest thatselective reduction of 2 Na+ pump activitycan elevate local [Na+] and, viaNa+/Ca2+ exchange, [Ca2+] in thetiny volume of cytosol between the plasma membrane and ER. This, inturn, augments adjacent ER Ca2+ stores and therebyamplifies Ca2+ signaling without elevating bulk[Na+]cyt.

  相似文献   

3.
Theactin-binding proteins dystrophin and -actinin are members of afamily of actin-binding proteins that may link the cytoskeleton tomembrane proteins such as ion channels. Previous work demonstrated thatthe activity of Ca2+ channels can be regulated by agentsthat disrupt or stabilize the cytoskeleton. In the present study, weemployed immunohistochemical and electrophysiological techniques toinvestigate the potential regulation of cardiac L-type Ca2+channel activity by dystrophin and -actinin in cardiac myocytes andin heterologous cells. Both actin-binding proteins were found tocolocalize with the Ca2+ channel in mouse cardiac myocytesand to modulate channel function. Inactivation of the Ca2+channel in cardiac myocytes from mice lacking dystrophin(mdx mice) was reduced compared with that in wild-typemyocytes, voltage dependence of activation was shifted by 5 mV to morepositive potentials, and stimulation by the -adrenergic pathway andthe dihydropyridine agonist BAY K 8644 was increased. Furthermore, heterologous coexpression of the Ca2+ channel with muscle,but not nonmuscle, forms of -actinin was also found to reduceinactivation. As might be predicted from a reduction ofCa2+ channel inactivation, a prolonging of the mouseelectrocardiogram QT was observed in mdx mice. These resultssuggest a combined role for dystrophin and -actinin in regulatingthe activity of the cardiac L-type Ca2+ channel and apotential mechanism for cardiac dysfunction in Duchenne and Beckermuscular dystrophies.

  相似文献   

4.
Whole cell patch-clamprecordings were made from cultured myenteric neurons taken from murineproximal colon. The micropipette contained Cs+ to removeK+ currents. Depolarization elicited a slowly activatingtime-dependent outward current (Itdo), whereasrepolarization was followed by a slowly deactivating tail current(Itail). Itdo andItail were present in ~70% of neurons. Weidentified these currents as Cl currents(ICl), because changing the transmembraneCl gradient altered the measured reversal potential(Erev) of both Itdo andItail with that for Itailshifted close to the calculated Cl equilibrium potential(ECl). ICl areCa2+-activated Cl current[ICl(Ca)] because they were Ca2+dependent. ECl, which was measured from theErev of ICl(Ca) using agramicidin perforated patch, was 33 mV. This value is more positivethan the resting membrane potential (56.3 ± 2.7 mV), suggestingmyenteric neurons accumulate intracellular Cl.-Conotoxin GIVA [0.3 µM; N-type Ca2+ channelblocker] and niflumic acid [10 µM; knownICl(Ca) blocker], decreased theICl(Ca). In conclusion, these neurons haveICl(Ca) that are activated by Ca2+entry through N-type Ca2+ channels. These currents likelyregulate postspike frequency adaptation.

  相似文献   

5.
The cardiacL-type calcium current (ICa) can be modified byactivation of protein kinase C (PKC). However, the effect of PKC activation on ICa is still controversial. Somestudies have shown a decrease in current, whereas other studies havereported a biphasic effect (an increase followed by a decrease incurrent or vice versa). A possible explanation for the conflictingresults is that several isoforms of PKC with opposing effects onICa were activated simultaneously. Here, weexamined the influence of a single PKC isoform (PKC-II) on L-typecalcium channels in isolation from other cardiac isoforms, using atransgenic mouse that conditionally expresses PKC-II. Ventricularcardiac myocytes were isolated from newborn mice and examined forexpression of the transgene using single cell RT-PCR afterICa recording. Cells expressing PKC-II showeda twofold increase in nifedipine-sensitive ICa. The PKC-II antagonist LY-379196 returned ICaamplitude to levels found in non-PKC-II-expressing myocytes. Theincrease in ICa was independent ofCav1.2-subunit mRNA levels as determined by quantitativeRT-PCR. Thus these data demonstrate that PKC- is a potent modulatorof cardiac L-type calcium channels and that this specific isoformincreases ICa in neonatal ventricular myocytes.

  相似文献   

6.
Tumor necrosisfactor (TNF)- has a biphasic effect on heart contractility andstimulates phospholipase A2 (PLA2) incardiomyocytes. Because arachidonic acid (AA) exerts a dual effect onintracellular Ca2+ concentration([Ca2+]i) transients, we investigated thepossible role of AA as a mediator of TNF- on[Ca2+]i transients and contraction withelectrically stimulated adult rat cardiac myocytes. At a lowconcentration (10 ng/ml) TNF- produced a 40% increase in theamplitude of both [Ca2+]i transients andcontraction within 40 min. At a high concentration (50 ng/ml) TNF-evoked a biphasic effect comprising an initial positive effect peakingat 5 min, followed by a sustained negative effect leading to50-40% decreases in [Ca2+]i transientsand contraction after 30 min. Both the positive and negative effects ofTNF- were reproduced by AA and blocked by arachidonyltrifluoromethylketone (AACOCF3), an inhibitor of cytosolic PLA2.Lipoxygenase and cyclooxygenase inhibitors reproduced the high-doseeffects of TNF- and AA. The negative effects of TNF- and AA werealso reproduced by sphingosine and were abrogated by the ceramidaseinhibitor n-oleoylethanolamine. These results point out thekey role of the cytosolic PLA2/AA pathway in mediating thecontractile effects of TNF-.

  相似文献   

7.
Polyaminesare essential for early mucosal restitution that occurs by epithelialcell migration to reseal superficial wounds after injury. Normalintestinal epithelial cells are tightly bound in sheets, but they needto be rapidly disassembled during restitution. -Catenin is involvedin cell-cell adhesion, and its tyrosine phosphorylation causesdisassembly of adhesion junctions, enhancing the spreading of cells.The current study determined whether polyamines are required for thestimulation of epithelial cell migration by altering -catenintyrosine phosphorylation. Migration of intestinal epithelial cells(IEC-6 line) after wounding was associated with an increase in-catenin tyrosine phosphorylation, which decreased the bindingactivity of -catenin to -catenin. Polyamine depletion by-difluoromethylornithine reduced cytoplasmic free Ca2+concentration ([Ca2+]cyt), preventedinduction of -catenin phosphorylation, and decreased cell migration.Elevation of [Ca2+]cyt induced by theCa2+ ionophore ionomycin restored -cateninphosphorylation and promoted migration in polyamine-deficient cells.Decreased -catenin phosphorylation through the tyrosine kinaseinhibitor herbimycin-A or genistein blocked cell migration, which wasaccompanied by reorganization of cytoskeletal proteins. These resultsindicate that -catenin tyrosine phosphorylation plays a criticalrole in polyamine-dependent cell migration and that polyamines induce-catenin tyrosine phosphorylation at least partially through[Ca2+]cyt.

  相似文献   

8.
The effects of niflumic acid on ryanodinereceptors (RyRs) of frog skeletal muscle were studied by incorporatingsarcoplasmic reticulum (SR) vesicles into planar lipid bilayers. Frogmuscle had two distinct types of RyRs in the SR: one showed abell-shaped channel activation curve against cytoplasmicCa2+ or niflumic acid, and its mean open probability(Po) was increased by perchlorate at 20-30mM (termed "-like" RyR); the other showed a sigmoidalactivation curve against Ca2+ or niflumic acid, with noeffect on perchlorate (termed "-like" RyR). The unitaryconductance and reversal potential of both channel types wereunaffected after exposure to niflumic acid when clamped at 0 mV. Whenclamped at more positive potentials, the -like RyRchannel rectified this, increasing the unitary current. Treatment withniflumic acid did not inhibit the response of both channels toCa2+ release channel modulators such as caffeine,ryanodine, and ruthenium red. The different effects of niflumic acid onPo and the unitary current amplitude in both typesof channels may be attributable to the lack or the presence ofinactivation sites and/or distinct responses to agonists.

  相似文献   

9.
Ca2+-mediated agonists,including UTP, are being developed for therapeutic use in cysticfibrosis (CF) based on their ability to modulate alternativeCl conductances. As CF isalso characterized by hyperabsorption ofNa+, we determined the effect ofmucosal UTP on transepithelial Na+transport in primary cultures of human bronchial epithelia (HBE). Insymmetrical NaCl, UTP induced an initial increase in short-circuit current (Isc)followed by a sustained inhibition. To differentiate between effects onNa+ absorption andCl secretion,Isc was measuredin the absence of mucosal and serosal Cl(INa). Again,mucosal UTP induced an initial increase and then a sustained decreasethat reduced amiloride-sensitiveINa by 73%. TheCa2+-dependent agonists histamine,bradykinin, serosal UTP, and thapsigargin similarly induced sustainedinhibition (62-84%) ofINa. Mucosal UTPinduced similar sustained inhibition (half-maximal inhibitory concentration 296 nM) ofINa in primarycultures of human CF airway homozygous for the F508 mutation.BAPTA-AM blunted UTP-dependent inhibition ofINa, butinhibitors of protein kinase C (PKC) and phospholipaseA2 had no effect. Indeed, directactivation of PKC by phorbol 12-myristate 13-acetate failed to inhibitNa+ absorption. Apyrase, a tri-and diphosphatase, did not reverse inhibitory effects of UTP onINa, suggesting along-term inhibitory effect of UTP that is independent of receptoroccupancy. After establishment of a mucosa-to-serosaK+ concentration gradient andpermeabilization of the mucosal membrane with nystatin, mucosal UTPinduced an initial increase in K+current followed by a sustained inhibition. We conclude that increasingcellular Ca2+ induces a long-terminhibition of transepithelial Na+transport across normal and CF HBE at least partly due todownregulation of a basolateral membraneK+ conductance. Thus UTP may havea dual therapeutic effect in CF airway:1) stimulation of aCl secretory response and2) inhibition ofNa+ transport.  相似文献   

10.
The effects ofcyanide (CN) on whole cell current measured with the perforated-patchmethod were studied in adrenal medullary cells. Application of CNproduced initially inward and then outward currents at 52 mV ormore negative. As the membrane potential was hyperpolarized, amplitudeand latency of the outward current (Io) by CNbecame small and long, respectively. A decrease in the externalNa+ concentration did not affectthe latency for CN-inducedIo but enhancedthe amplitude markedly. The CNIo reversedpolarity at 85 mV, close to the Nernst potential forK+, and was suppressed by theK+ channel blockers curare andapamin but not by glibenclamide, suggesting thatIo is due to theactivation of Ca2+-dependentK+ channels. Consistent with thisnotion, the Ca2+-mobilizingagents, muscarine and caffeine, also producedIo. Exposure toCN in a Ca2+-deficient medium for4 min abolished caffeine- or muscarine-induced Io withoutdevelopment ofIo, and additionof Ca2+ to the CN-containingsolution inducedIo. We concludethat exposure to CN producesCa2+-dependentK+ currents in an externalCa2+-dependent manner, probablyvia facilitation of Ca2+ influx.

  相似文献   

11.
Ca2+-activatedCl currents (ICl,Ca) wereexamined using fluorescence confocal microscopy to monitorintracellular Ca2+ liberation evoked by flash photolysis ofcaged inositol 1,4,5-trisphosphate (InsP3) involtage-clamped Xenopus oocytes. Currents at +40 mV exhibited asteep dependence on InsP3 concentration([InsP3]), whereas currents at140 mV exhibited a higher threshold and more graded relationshipwith [InsP3]. Ca2+ levelsrequired to half-maximally activate ICl,Ca wereabout 50% larger at 140 mV than at +40 mV, and currents evokedby small Ca2+ elevations were reduced >25-fold. Thehalf-decay time of Ca2+ signals shortened at increasinglypositive potentials, whereas the decay of ICl,Calengthened. The steady-state current-voltage (I-V) relationshipfor ICl,Ca exhibited outward rectification withweak photolysis flashes but became more linear with stronger stimuli.Instantaneous I-V relationships were linear with both strongand weak stimuli. Current relaxations following voltage steps duringactivation of ICl,Ca decayed with half-times that shortened from about 100 ms at +10 mV to 20 ms at 160 mV. We conclude that InsP3-mediated Ca2+liberation activates a single population of Clchannels, which exhibit voltage-dependent Ca2+ activationand voltage-independent instantaneous conductance.

  相似文献   

12.
Previous studies have shown that inhibition of L-type Ca2+ current (ICa) by cytosolic free Mg2+ concentration ([Mg2+]i) is profoundly affected by activation of cAMP-dependent protein kinase pathways. To investigate the mechanism underlying this counterregulation of ICa, rat cardiac myocytes and tsA201 cells expressing L-type Ca2+ channels were whole cell voltage-clamped with patch pipettes in which [Mg2+] ([Mg2+]p) was buffered by citrate and ATP. In tsA201 cells expressing wild-type Ca2+ channels (1C/2A/2), increasing [Mg2+]p from 0.2 mM to 1.8 mM decreased peak ICa by 76 ± 4.5% (n = 7). Mg2+-dependent modulation of ICa was also observed in cells loaded with ATP--S. With 0.2 mM [Mg2+]p, manipulating phosphorylation conditions by pipette application of protein kinase A (PKA) or phosphatase 2A (PP2A) produced large changes in ICa amplitude; however, with 1.8 mM [Mg2+]p, these same manipulations had no significant effect on ICa. With mutant channels lacking principal PKA phosphorylation sites (1C/S1928A/2A/S478A/S479A/2), increasing [Mg2+]p had only small effects on ICa. However, when channel open probability was increased by 1C-subunit truncation (1C1905/2A/S478A/S479A/2), increasing [Mg2+]p greatly reduced peak ICa. Correspondingly, in myocytes voltage-clamped with pipette PP2A to minimize channel phosphorylation, increasing [Mg2+]p produced a much larger reduction in ICa when channel opening was promoted with BAY K8644. These data suggest that, around its physiological concentration range, cytosolic Mg2+ modulates the extent to which channel phosphorylation regulates ICa. This modulation does not necessarily involve changes in channel phosphorylation per se, but more generally appears to depend on the kinetics of gating induced by channel phosphorylation. voltage-gated Ca2+ channel; cardiac myocytes; human embryonic kidney cells; protein kinase A; protein phosphatase 2A  相似文献   

13.
A reduction in angiotensinII (ANG II) in vivo by treatment of rabbits with theangiotensin-converting enzyme inhibitor, captopril, increasesNa+-K+ pump current (Ip)of cardiac myocytes. This increase is abolished by exposure of myocytesto ANG II in vitro. Because ANG II induces translocation of the-isoform of protein kinase C (PKC), we examined whether thisisozyme regulates the pump. We treated rabbits with captopril, isolatedmyocytes, and measured Ip of myocytes voltageclamped with wide-tipped patch pipettes. Ip ofmyocytes from captopril-treated rabbits was larger thanIp of myocytes from controls. ANG II superfusionof myocytes from captopril-treated rabbits decreasedIp to levels similar to controls. Inclusion ofPKC-specific blocking peptide in pipette solutions used to perfusethe intracellular compartment abolished the effect of ANG II. Inclusionof RACK, a PKC-specific activating peptide, in pipettesolutions had an effect on Ip that was similarto that of ANG II. There was no additive effect of ANG II andRACK. We conclude that PKC regulates the sarcolemmalNa+-K+ pump.

  相似文献   

14.
Zhang, Xue-Qian, Yuk-Chow Ng, Timothy I. Musch, Russell L. Moore, R. Zelis, and Joseph Y. Cheung. Sprint training attenuates myocyte hypertrophy and improvesCa2+ homeostasis in postinfarctionmyocytes. J. Appl. Physiol. 84(2): 544-552, 1998.Myocytes isolated from rat hearts 3 wk aftermyocardial infarction (MI) had decreasedNa+/Ca2+exchange currents(INa/Ca; 3 Na+ out:1Ca2+ in) and sarcoplasmicreticulum (SR)-releasable Ca2+contents. These defects in Ca2+regulation may contribute to abnormal contractility in MI myocytes. Because exercise training elicits positive adaptations in cardiac contractile function and myocardialCa2+ regulation, thepresent study examined whether 6-8 wk ofhigh-intensity sprint training (HIST) would ameliorate some of thecellular maladaptations observed in post-MI rats with limited exerciseactivity (Sed). In MI rats, HIST did not affect citrate synthaseactivities of plantaris muscles but significantly increased thepercentage of cardiac -myosin heavy chain (MHC) isoforms (57.2 ± 1.9 vs. 49.3 ± 3.5 in MI-HIST vs. MI-Sed, respectively;P  0.05). At the single myocytelevel, HIST attenuated cellular hypertrophy observed post-MI, asevidenced by reductions in cell lengths (112 ± 4 vs. 130 ± 5 µm in MI-HIST vs. MI-Sed, respectively;P  0.005) and cell capacitances (212 ± 8 vs. 242 ± 9 pF in MI-HIST vs. MI-Sed, respectively; P  0.015). ReverseINa/Ca wassignificantly lower (P  0.0001) inmyocytes from MI-Sed rats compared with those from rats that were shamoperated and sedentary. HIST significantly increased reverseINa/Ca(P  0.05) without affecting theamount ofNa+/Ca2+exchangers (detected by immunoblotting) in MI myocytes. SR-releasable Ca2+ content, as estimated byintegrating forwardINa/Ca duringcaffeine-induced SR Ca2+ release,was also significantly increased (P  0.02) by HIST in MI myocytes. We conclude that the enhanced cardiacoutput and stroke volume in post-MI rats subjected to HIST aremediated, at least in part, by reversal of cellular maladaptationspost-MI.

  相似文献   

15.
In cardiacsarcolemmal vesicles, MgATP stimulatesNa+/Ca2+exchange with the following characteristics:1) increases 10-fold the apparentaffinity for cytosolic Ca2+;2) a Michaelis constant for ATP of~500 µM; 3) requires micromolar vanadate while millimolar concentrations are inhibitory;4) not observed in the presence of20 µM eosin alone but reinstated when vanadate is added;5) mimicked by adenosine5'-O-(3-thiotriphosphate), without the need for vanadate, but not by ,-methyleneadenosine 5'-triphosphate; and 6) notaffected by unspecific protein alkaline phosphatase but abolished by aphosphatidylinositol-specific phospholipase C (PI-PLC). The PI-PLCeffect is counteracted by phosphatidylinositol. In addition, in theabsence of ATP,L--phosphatidylinositol4,5-bisphosphate (PIP2) was ableto stimulate the exchanger activity in vesicles pretreated with PI-PLC.This MgATP stimulation is not related to phosphorylation of thecarrier, whereas phosphorylation appeared in the phosphoinositides,mainly PIP2, thatcoimmunoprecipitate with the exchanger. Vesicles incubated with MgATPand no Ca2+ show a markedsynthesis ofL--phosphatidylinositol4-monophosphate (PIP) with little production ofPIP2; in the presence of 1 µM Ca2+, the net synthesis of PIP issmaller, whereas that of PIP2increases ninefold. These results indicate thatPIP2 is involved in the MgATPstimulation of the cardiacNa+/Ca2+exchanger through a fast phosphorylation chain: aCa2+-independent PIP formationfollowed by a Ca2+-dependentsynthesis of PIP2.

  相似文献   

16.
We have confirmed that A6 cells (derived fromkidney of Xenopus laevis), whichcontain both mineralocorticoid and glucocorticoid receptors, do notnormally possess 11-hydroxysteroid dehydroxgenase (11-HSD1 or11-HSD2) enzymatic activity and so are without apparent "protective" enzymes. A6 cells do not convert the glucocorticoid corticosterone to 11-dehydrocorticosterone but do, however, possess steroid 6-hydroxylase that transforms corticosterone to6-hydroxycorticosterone. This hydroxylase is cytochromeP-450 3A (CYP3A). We have nowdetermined the effects of 3,5-tetrahydroprogesterone andchenodeoxycholic acid (both inhibitors of 11-HSD1) and11-dehydrocorticosterone and11-hydroxy-3,5-tetrahydroprogesterone (inhibitors of11-HSD2) and carbenoxalone, which inhibits both 11-HSD1 and11-HSD2, on the actions and metabolism of corticosterone and activeNa+ transport [short-circuitcurrent(Isc)] inA6 cells. All of these 11-HSD inhibitory substances induced asignificant increment in corticosterone-inducedIsc, which wasdetectable within 2 h. However, none of these agents caused an increasein Isc whenincubated by themselves with A6 cells. In all cases, the additionalIsc was inhibitedby the mineralocorticoid receptor (MR) antagonist, RU-28318, whereasthe original Iscelicited by corticosterone alone was inhibited by the glucocorticoidreceptor antagonist, RU-38486. In separate experiments, each agent wasshown to significantly inhibit metabolism of corticosterone to6-hydroxycorticosterone in A6 cells, and a linear relationshipexisted between 6-hydroxylase inhibition and the MR-mediatedincrease in Iscin the one inhibitor tested. Troleandomycin, a selective inhibitor ofCYP3A, inhibited 6-hydroxylase and also significantly enhancedcorticosterone-induced Isc at 2 h. Theseexperiments indicate that the enhanced MR-mediated Isc in A6 cellsmay be related to inhibition of 6-hydroxylase activity in thesecells and that this 6-hydroxylase (CYP3A) may be protecting theexpression of corticosterone-induced active Na+ transport in A6 cells byMR-mediated mechanism(s).

  相似文献   

17.
Calcium dependence of C-type natriuretic peptide-formed fast K+ channel   总被引:2,自引:0,他引:2  
The lipid bilayertechnique was used to characterize theCa2+ dependence of a fastK+ channel formed by a synthetic17-amino acid segment [OaCNP-39-(1-17)] ofa 39-amino acid C-type natriuretic peptide (OaCNP-39) found in platypus (Ornithorhynchusanatinus) venom (OaV). TheOaCNP-39-(1-17)-formed K+ channel was reversiblydependent on1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-buffered cis (cytoplasmic)Ca2+ concentration([Ca2+]cis).The channel was fully active when[Ca2+]ciswas >104 M andtrans (luminal)Ca2+ concentration was 1.0 mM, butnot at low[Ca2+]cis.The open probability of single channels increased from zero at1 × 106 McisCa2+ to 0.73 ± 0.17 (n = 22) at103 McisCa2+. Channel openings to themaximum conductance of 38 pS were rapidly and reversibly activated when[Ca2+]cis,but not transCa2+ concentration(n = 5), was increased to >5 × 104 M(n = 14). Channel openings to thesubmaximal conductance of 10.5 pS were dominant at5 × 104 MCa2+.K+ channels did not open whencisMg2+ orSr2+ concentrations were increasedfrom zero to 103 M or when[Ca2+]ciswas maintained at 106 M(n = 3 and 2). The Hill coefficientand the inhibition constant were 1 and 0.8 × 104 McisCa2+, respectively. Thisdependence of the channel on high[Ca2+]cissuggests that it may become active under1) physiological conditions whereCa2+ levels are high, e.g., duringcardiac and skeletal muscle contractions, and2) pathological conditions that leadto a Ca2+ overload, e.g., ischemicheart and muscle fatigue. The channel could modify a cascade ofphysiological functions that are dependent on theCa2+-activatedK+ channels, e.g., vasodilationand salt secretion.

  相似文献   

18.
The goal of the present study was to testthe hypothesis that local Ca2+ release events(Ca2+ sparks) deliver high local Ca2+concentration to activate nearby Ca2+-sensitiveK+ (BK) channels in the cell membrane of arterial smoothmuscle cells. Ca2+ sparks and BK channels were examined inisolated myocytes from rat cerebral arteries with laser scanningconfocal microscopy and patch-clamp techniques. BK channels had anapparent dissociation constant for Ca2+ of 19 µM and aHill coefficient of 2.9 at 40 mV. At near-physiological intracellularCa2+ concentration ([Ca2+]i; 100 nM) and membrane potential (40 mV), the open probability of a singleBK channel was low (1.2 × 106). A Ca2+spark increased BK channel activity to 18. Assuming that 1-100% of the BK channels are activated by a single Ca2+ spark, BKchannel activity increases 6 × 105-fold to 6 × 103-fold, which corresponds to ~30 µM to 4 µM sparkCa2+ concentration.1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acidacetoxymethyl ester caused the disappearance of all Ca2+sparks while leaving the transient BK currents unchanged. Our resultssupport the idea that Ca2+ spark sites are in closeproximity to the BK channels and that local[Ca2+]i reaches micromolar levels to activateBK channels.

  相似文献   

19.
The cardiacNa+/Ca2+ exchanger (NCX), an importantregulator of cytosolic Ca2+ concentration in contractionand relaxation, has been shown in trout heart sarcolemmal vesicles tohave high activity at 7°C relative to its mammalian isoform. Thisunique property is likely due to differences in protein structure. Inthis study, outward NCX currents (INCX) of thewild-type trout (NCX-TR1.0) and canine (NCX 1.1) exchangers expressedin oocytes were measured to explore the potential contributions ofregulatory vs. transport mechanisms to this observation. cRNA wastranscribed in vitro from both wild-type cDNA and was injected intoXenopus oocytes. INCX of NCX-TR1.0 and NCX1.1 were measured after 3-4 days over a temperature range of 7-30°C using the giant excised patch technique. TheINCX for both isoforms exhibitedNa+-dependent inactivation and Ca2+-dependentpositive regulation. The INCX of NCX1.1exhibited typical mammalian temperature sensitivities withQ10 values of 2.4 and 2.6 for peak and steady-statecurrents, respectively. However, the INCX ofNCX-TR1.0 was relatively temperature insensitive with Q10values of 1.2 and 1.1 for peak and steady-state currents, respectively.INCX current decay was fit with a singleexponential, and the resultant rate constant of inactivation () wasdetermined as a function of temperature. As expected,  decreasedmonotonically with temperature for both isoforms. Although  wassignificantly greater in NCX1.1 compared with NCX-TR1.0 at alltemperatures, the effect of temperature on  was not differentbetween the two isoforms. These data suggest that thedisparities in INCX temperature dependencebetween these two exchanger isoforms are unlikely due to differences intheir inactivation kinetics. In addition, similar differences intemperature dependence were observed in both isoforms after-chymotrypsin treatment that renders the exchanger in a deregulatedstate. These data suggest that the differences in INCX temperature dependence between the twoisoforms are not due to potential disparities in either theINCX regulatory mechanisms or structuraldifferences in the cytoplasmic loop but are likely predicated ondifferences within the transmembrane segments.

  相似文献   

20.
Locally derived growth factors and cytokines in bone play acrucial role in the regulation of bone remodeling, i.e., bone formationand bone resorption processes. We studied the effect of interleukin(IL)-1, tumor necrosis factor (TNF)-, andEscherichia coli lipopolysaccharide(LPS) on the hormone-activatedCa2+ message system in theosteoblastic cell line UMR-106 and in osteoblastic cultures derivedfrom neonatal rat calvariae. In both cell preparations, IL-1,TNF-, and LPS did not alter basal intracellularCa2+ concentration([Ca2+]i)but attenuated Ca2+ transientsevoked by parathyroid hormone (PTH) andPGE2 in a dose (1-100 ng/ml)-and time (8-24 h)-dependent fashion. The cytokines modulatedhormonally induced Ca2+ influx(estimated by using Mn2+ as asurrogate for Ca2+) as well asCa2+ mobilization fromintracellular stores. The latter was linked to suppressed production ofhormonally induced inositol 1,4,5-trisphosphate. The effect ofcytokines on[Ca2+]iwas abolished by the tyrosine kinase inhibitor herbimycin A (50 ng/ml).The cytokine's effect was, however, independent of nitric oxide (NO)production, since NO donors (sodium nitroprusside) as well as permeablecGMP analogs augment, rather than attenuate, hormonally inducedCa2+ transients in osteoblasts.Given the stimulatory role of cytokines on NO production inosteoblasts, the disparate effects of cytokines and NO on theCa2+ signaling pathway may servean autocrine/paracrine mechanism for modulating the effect ofcalciotropic hormones on bone metabolism.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号