首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a multiplexed real-time PCR assay using four sets of gene-specific oligonucleotide primers and four TaqMan probes labeled with four different fluorophores in a single reaction for detection of total and pathogenic Vibrio parahaemolyticus, including the pandemic O3:K6 serotype in oysters. V. parahaemolyticus has been associated with outbreaks of food-borne gastroenteritis caused by the consumption of raw or undercooked seafood and therefore is a concern to the seafood industry and consumers. We selected specific primers and probes targeting the thermostable direct hemolysin gene (tdh) and tdh-related hemolysin gene (trh) that have been reported to be associated with pathogenesis in this organism. In addition, we targeted open reading frame 8 of phage f237 (ORF8), which is associated with a newly emerged virulent pandemic serotype of V. parahameolyticus O3:K6. Total V. parahaemolyticus was targeted using the thermolabile hemolysin gene (tlh). The sensitivity of the combined four-locus multiplexed TaqMan PCR was found to be 200 pg of purified genomic DNA and 10(4) CFU per ml for pure cultures. Detection of an initial inoculum of 1 CFU V. parahaemolyticus per g of oyster tissue homogenate was possible after overnight enrichment, which resulted in a concentration of 3.3x10(9) CFU per ml. Use of this method with natural oysters resulted in 17/33 samples that were positive for tlh and 4/33 samples that were positive for tdh. This assay specifically and sensitively detected total and pathogenic V. parahaemolyticus and is expected to provide a rapid and reliable alternative to conventional detection methods by reducing the analysis time and obviating the need for multiple assays.  相似文献   

2.
The seasonal abundance of Vibrio parahaemolyticus in oysters from two estuaries along the southwest coast of India was studied by colony hybridization using nonradioactive labeled oligonucleotide probes. The density of total V. parahaemolyticus bacteria was determined using a probe binding to the tlh (thermolabile hemolysin) gene, and the density of pathogenic V. parahaemolyticus bacteria was determined by using a probe binding to the tdh (thermostable direct hemolysin) gene. Furthermore, the prevalence of V. parahaemolyticus was studied by PCR amplification of the toxR, tdh, and trh genes. PCR was performed directly with oyster homogenates and also following enrichment in alkaline peptone water for 6 and 18 h. V. parahaemolyticus was detected in 93.87% of the samples, and the densities ranged from <10 to 104 organisms per g. Pathogenic V. parahaemolyticus could be detected in 5 of 49 samples (10.2%) by colony hybridization using the tdh probe and in 3 of 49 samples (6.1%) by PCR. Isolates from one of the samples belonged to the pandemic serotype O3:K6. Twenty-nine of the 49 samples analyzed (59.3%) were positive as determined by PCR for the presence of the trh gene in the enrichment broth media. trh-positive V. parahaemolyticus was frequently found in oysters from India.  相似文献   

3.
Vibrio parahaemolyticus is an estuarine bacterium that is the leading cause of shellfish-associated cases of bacterial gastroenteritis in the United States. Our laboratory developed a real-time multiplex PCR assay for the simultaneous detection of the thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and thermostable-related hemolysin (trh) genes of V. parahaemolyticus. The tlh gene is a species-specific marker, while the tdh and trh genes are pathogenicity markers. An internal amplification control (IAC) was incorporated to ensure PCR integrity and eliminate false-negative reporting. The assay was tested for specificity against >150 strains representing eight bacterial species. Only V. parahaemolyticus strains possessing the appropriate target genes generated a fluorescent signal, except for a late tdh signal generated by three strains of V. hollisae. The multiplex assay detected <10 CFU/reaction of pathogenic V. parahaemolyticus in the presence of >104 CFU/reaction of total V. parahaemolyticus bacteria. The real-time PCR assay was utilized with a most-probable-number format, and its results were compared to standard V. parahaemolyticus isolation methodology during an environmental survey of Alaskan oysters. The IAC was occasionally inhibited by the oyster matrix, and this usually corresponded to negative results for V. parahaemolyticus targets. V. parahaemolyticus tlh, tdh, and trh were detected in 44, 44, and 52% of the oyster samples, respectively. V. parahaemolyticus was isolated from 33% of the samples, and tdh+ and trh+ strains were isolated from 19 and 26%, respectively. These results demonstrate the utility of the real-time PCR assay in environmental surveys and its possible application to outbreak investigations for the detection of total and pathogenic V. parahaemolyticus.  相似文献   

4.
Recent Vibrio parahaemolyticus outbreaks associated with consumption of raw shellfish in the United States focused attention on the occurrence of this organism in shellfish. From March 1999 through September 2000, paired oyster samples were collected biweekly from two shellfish-growing areas in Mobile Bay, Ala. The presence and densities of V. parahaemolyticus were determined by using DNA probes targeting the thermolabile hemolysin (tlh) and thermostable direct hemolysin (tdh) genes for confirmation of total and pathogenic V. parahaemolyticus, respectively. V. parahaemolyticus was detected in all samples with densities ranging from <10 to 12,000 g−1. Higher V. parahaemolyticus densities were associated with higher water temperatures. Pathogenic strains were detected in 34 (21.8%) of 156 samples by direct plating or enrichment. Forty-six of 6,018 and 31 of 6,992 V. parahaemolyticus isolates from enrichments and direct plates, respectively, hybridized with the tdh probe. There was an apparent inverse relationship between water temperature and the prevalence of pathogenic strains. Pathogenic strains were of diverse serotypes, and 97% produced urease and possessed a tdh-related hemolysin (trh) gene. The O3:K6 serotype associated with pandemic spread and recent outbreaks in the United States was not detected. The efficient screening of numerous isolates by colony lift and DNA probe procedures may account for the higher prevalence of samples with tdh+ V. parahaemolyticus than previously reported.  相似文献   

5.
Although autochthonous vibrio densities are known to be influenced by water temperature and salinity, little is understood about other environmental factors associated with their abundance and distribution. Densities of culturable Vibrio vulnificus containing vvh (V. vulnificus hemolysin gene) and V. parahaemolyticus containing tlh (thermolabile hemolysin gene, ubiquitous in V. parahaemolyticus), tdh (thermostable direct hemolysin gene, V. parahaemolyticus pathogenicity factor), and trh (tdh-related hemolysin gene, V. parahaemolyticus pathogenicity factor) were measured in coastal waters of Mississippi and Alabama. Over a 19-month sampling period, vibrio densities in water, oysters, and sediment varied significantly with sea surface temperature (SST). On average, tdh-to-tlh ratios were significantly higher than trh-to-tlh ratios in water and oysters but not in sediment. Although tlh densities were lower than vvh densities in water and in oysters, the opposite was true in sediment. Regression analysis indicated that SST had a significant association with vvh and tlh densities in water and oysters, while salinity was significantly related to vibrio densities in the water column. Chlorophyll a levels in the water were correlated significantly with vvh in sediment and oysters and with pathogenic V. parahaemolyticus (tdh and trh) in the water column. Furthermore, turbidity was a significant predictor of V. parahaemolyticus density in all sample types (water, oyster, and sediment), and its role in predicting the risk of V. parahaemolyticus illness may be more important than previously realized. This study identified (i) culturable vibrios in winter sediment samples, (ii) niche-based differences in the abundance of vibrios, and (iii) predictive signatures resulting from correlations between environmental parameters and vibrio densities.Vibrio spp. occur naturally in estuarine and marine environments, and two species of this genus, V. vulnificus and V. parahaemolyticus, are responsible for the majority of reported vibrio illnesses in the United States (2). V. vulnificus infections are most commonly associated with the Gulf of Mexico, either via consumption of raw oysters harvested from these waters or wound infections following exposure to seawater. On average, about 50 cases of V. vulnificus septicemia are reported in the United States each year, with a case fatality rate of approximately 50% (31), the highest of any food-borne pathogen. In contrast, V. parahaemolyticus is the most common cause of seafood-associated bacterial gastroenteritis in the United States, with an estimated annual rate of 4,500 cases per year according to the Centers for Disease Control and Prevention. V. parahaemolyticus also causes wound infections, though these are less frequent and less severe compared to those caused by V. vulnificus (5). Primary septicemia can occur following V. parahaemolyticus infection, but it is relatively rare for this pathogen. In the United States, V. parahaemolyticus illness most often results from consumption of raw or undercooked seafood, particularly oysters.It is well established that vibrio densities correlate strongly with sea surface temperature (SST), with densities increasing as temperatures increase; however, with the exception of salinity, little is definitively known about the influence of other environmental parameters, such as turbidity and chlorophyll a (22, 33). Consequently, while SST has been estimated to explain approximately 50% of the annual variation of V. parahaemolyticus abundance in oysters harvested from the northern Gulf of Mexico (40), a considerable amount of variation remains unexplained. It is of interest to delineate the effects of other environmental parameters independent of SST, as these parameters may be associated with spatial and temporal variation of vibrio densities within seasonal periods when SST is relatively constant and risk of human exposure and illness is high. Moreover, the majority of what is known about V. parahaemolyticus in the environment is based on total populations; little information is available on the pathogenic subpopulations. Isolates containing genetic markers for pathogenicity factors, including the thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) typically constitute <1% of the population in marine or postharvest oyster samples, but they account for >90% of clinical isolates (12). The basis for V. vulnificus pathogenicity remains unclear, as few pathogenicity factors have been described definitively (31). To address these data gaps, we monitored densities of culturable V. vulnificus containing vvh (the V. vulnificus hemolysin gene) and V. parahaemolyticus containing tlh (the thermolabile hemolysin gene, ubiquitous in V. parahaemolyticus), tdh, and trh in water, oysters, and sediment collected from coastal waters of Mississippi and Alabama. Associations between bacterial densities and environmental parameters were analyzed by regressing observations against sea surface temperature, chlorophyll a, turbidity, and salinity.  相似文献   

6.
In this study, we have developed a SYBR Green™ I-based real-time multiplexed PCR assay for the detection of Vibrio parahaemolyticus in Gulf of Mexico water (gulf water), artificially seeded and natural oysters targeting three hemolysin genes, tlh, tdh and trh in a single reaction. Post-amplification melt-temperature analysis confirmed the amplification of all three targeted genes with high specificity. The detection sensitivity was 10 cfu (initial inoculum) in 1 ml of gulf water or oyster tissue homogenate, following 5 h enrichment. The results showed 58% of the oysters to be positive for tlh, indicating the presence of V. parahaemolyticus; of which 21% were positive for tdh; and 0.7% for trh, signifying the presence of pathogenic strains. The C t values showed that oyster tissue matrix had some level of inhibition, whereas the gulf water had negligible effect on PCR amplification. The assay was rapid (~8 h), specific and sensitive, meeting the ISSC guidelines. Rapid detection using real-time multiplexed PCR will help reduce V. parahaemolyticus-related disease outbreaks, thereby increasing consumer confidence and economic success of the seafood industry.  相似文献   

7.
Although thermostable direct hemolysin (TDH)-producing Vibrio parahaemolyticus has caused many infections in Asian countries, the United States, and other countries, it has been difficult to detect the same pathogen in seafoods and other environmental samples. In this study, we detected and enumerated tdh gene-positive V. parahaemolyticus in Japanese seafoods with a tdh-specific PCR method, a chromogenic agar medium, and a most-probable-number method. The tdh gene was detected in 33 of 329 seafood samples (10.0%). The number of tdh-positive V. parahaemolyticus ranged from <3 to 93/10 g. The incidence of tdh-positive V. parahaemolyticus tended to be high in samples contaminated with relatively high levels of total V. parahaemolyticus. TDH-producing strains of V. parahaemolyticus were isolated from 11 of 33 tdh-positive samples (short-necked clam, hen clam, and rock oyster). TDH-producing strains of V. parahaemolyticus were also isolated from the sediments of rivers near the coast in Japan. Representative strains of the seafood and sediment isolates were examined for the O:K serovar and by the PCR method specific to the pandemic clone and arbitrarily primed PCR and pulsed-field gel electrophoresis techniques. The results indicated that most O3:K6 tdh-positive strains belonged to the pandemic O3:K6 clone and suggested that serovariation took place in the Japanese environment.  相似文献   

8.
Since 1997, cases of Vibrio parahaemolyticus-related gastroenteritis from the consumption of raw oysters harvested in Washington State have been higher than historical levels. These cases have shown little or no correlation with concentrations of potentially pathogenic V. parahaemolyticus (positive for the thermostable direct hemolysin gene, tdh) in oysters, although significant concentrations of tdh+ V. parahaemolyticus strains were isolated from shellfish-growing areas in the Pacific Northwest (PNW). We compared clinical and environmental strains isolated from the PNW to those from other geographic regions within the United States and Asia for the presence of virulence-associated genes, including the thermostable direct hemolysin (tdh), the thermostable-related hemolysin (trh), urease (ureR), the pandemic group specific markers orf8 and toxRS, and genes encoding both type 3 secretion systems (T3SS1 and T3SS2). The majority of clinical strains from the PNW were positive for tdh, trh, and ureR genes, while a significant proportion of environmental isolates were tdh+ but trh negative. Hierarchical clustering grouped the majority of these clinical isolates into a cluster distinct from that including the pandemic strain RIMD2210633, clinical isolates from other geographical regions, and tdh+, trh-negative environmental isolates from the PNW. We detected T3SS2-related genes (T3SS2β) in environmental strains that were tdh and trh negative. The presence of significant concentrations of tdh+, trh-negative environmental strains in the PNW that have not been responsible for illness and T3SS2β in tdh- and trh-negative strains emphasizes the diversity in this species and the need to identify additional virulence markers for this bacterium to improve risk assessment tools for the detection of this pathogen.  相似文献   

9.
The thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are the main virulence factors of Vibrio parahaemolyticus. We isolated V. parahaemolyticus from seawater, fish, and oysters obtained from the Pueblo Viejo Lagoon in Veracruz, determined the serogroups, phenotypically and genotypically characterized TDH and TRH, and investigated the presence of the toxR gene. A total of 46 V. parahaemolyticus strains were isolated, and all of them amplified the 368-bp toxR gene fragment. The trh gene was not identified in any of the strains; 4 of the 46 strains were Kanagawa phenomenon (KP) positive and amplified the 251-bp tdh gene fragment. The most frequent serogroup was serogroup O3. This is the first report of the presence of KP-positive tdh-positive environmental V. parahaemolyticus strains in Mexico.  相似文献   

10.
Vibrio parahaemolyticus and Vibrio vulnificus, which are native to estuaries globally, are agents of seafood-borne or wound infections, both potentially fatal. Like all vibrios autochthonous to coastal regions, their abundance varies with changes in environmental parameters. Sea surface temperature (SST), sea surface height (SSH), and chlorophyll have been shown to be predictors of zooplankton and thus factors linked to vibrio populations. The contribution of salinity, conductivity, turbidity, and dissolved organic carbon to the incidence and distribution of Vibrio spp. has also been reported. Here, a multicoastal, 21-month study was conducted to determine relationships between environmental parameters and V. parahaemolyticus and V. vulnificus populations in water, oysters, and sediment in three coastal areas of the United States. Because ecologically unique sites were included in the study, it was possible to analyze individual parameters over wide ranges. Molecular methods were used to detect genes for thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and tdh-related hemolysin (trh) as indicators of V. parahaemolyticus and the hemolysin gene vvhA for V. vulnificus. SST and suspended particulate matter were found to be strong predictors of total and potentially pathogenic V. parahaemolyticus and V. vulnificus. Other predictors included chlorophyll a, salinity, and dissolved organic carbon. For the ecologically unique sites included in the study, SST was confirmed as an effective predictor of annual variation in vibrio abundance, with other parameters explaining a portion of the variation not attributable to SST.  相似文献   

11.
The occurrence of the hemolysin genes, tdh and trh, in Vibrio parahaemolyticus strains isolated from environmental samples collected from various exported seafood products comprising of fishes and shellfish (Mytilus edulis and Crassostrea gigas) or seawater, was studied. Eight strains were confirmed as V. parahaemolyticus by toxR -based polymerase chain reaction and only one strain out of these 8 strains was positive for tdh and trh genes. Toxigenic V. parahaemolyticus isolates are present in Tunisian coastal areas and they may also be present in Tunisian exported seafood products.  相似文献   

12.
We compared three sets of oligonucleotide primers and two probes designed for Vibrio vulnificus hemolysin A gene (vvhA) for TaqMan-based real-time PCR method enabling specific detection of Vibrio vulnificus in oysters. Two of three sets of primers with a probe were specific for the detection of all 81 V. vulnificus isolates by TaqMan PCR. The 25 nonvibrio and 12 other vibrio isolates tested were negative. However, the third set of primers, F-vvh1059 and R-vvh1159, with the P-vvh1109 probe, although positive for all V. vulnificus isolates, also exhibited positive cycle threshold (CT) values for other Vibrio spp. Optimization of the TaqMan PCR assay using F-vvh785/R-vvh990 or F-vvh731/R-vvh1113 primers and the P-vvh874 probe detected 1 pg of purified DNA and 103 V. vulnificus CFU/ml in pure cultures. The enriched oyster tissue homogenate did not exhibit detectable inhibition to the TaqMan PCR amplification of vvhA. Detection of 3 × 103 CFU V. vulnificus, resulting from a 5-h enrichment of an initial inoculum of 1 CFU/g of oyster tissue homogenate, was achieved with F-vvh785/R-vvh990 or F-vvh731/R-vvh1113 primers and P-vvh875 probe. The application of the TaqMan PCR using these primers and probe, exhibited detection of V. vulnificus on 5-h-enriched natural oysters harvested from the Gulf of Mexico. Selection of appropriate primers and a probe on vvhA for TaqMan-PCR-based detection of V. vulnificus in post-harvest-treated oysters would help avoid false-positive results, thus ensuring a steady supply of safe oysters to consumers and reducing V. vulnificus-related illnesses and deaths.  相似文献   

13.
Aims: The current study was aimed to develop a loop‐mediated isothermal amplification (LAMP) combined with amplicon detection by chromatographic lateral flow dipstick (LFD) assay for rapid and specific detection of Vibrio parahaemolyticus. Methods and Results: Biotinylated LAMP amplicons were produced by a set of four designed primers that recognized specifically the V. parahaemolyticus thermolabile haemolysin (tlh) gene followed by hybridization with an FITC‐labelled probe and LFD detection. The optimized time and temperature conditions for the LAMP assay were 90 min at 65°C. The LAMP–LFD method accurately identified 28 isolates of V. parahaemolyticus but did not detect 24 non‐parahaemolyticus Vibrio isolates and 35 non‐Vibrio bacterial isolates. The sensitivity of LAMP–LFD for V. parahaemolyticus detection in pure cultures was 120 CFU ml?1. In the case of spiked shrimp samples without enrichment, the detection limit for V. parahaemolyticus was 1·8 × 103 CFU g?1 or equivalent to 3 CFU per reaction while that of conventional PCR was 30 CFU per reaction. Conclusions: The established LAMP–LFD assay targeting tlh gene was specific, rapid and sensitive for identification of V. parahaemolyticus. Significance and Impact of the Study: The developed LAMP–LFD assay provided a valuable tool for detection of V. parahaemolyticus and can be used effectively for identification of V. parahaemolyticus in contaminated food sample.  相似文献   

14.
A novel method for detecting viable and thermostable direct hemolysin (TDH)-producing or TDH-related hemolysin (TRH)-producing Vibrio parahaemolyticus in seafood was developed. The method involved (i) enrichment culture, selective for viable, motile cells penetrating a soft-agar-coated filter paper, and (ii) a multiplex PCR assay targeting both the TDH gene (tdh) and TRH gene (trh) following DNase pretreatment on the test culture to eradicate any incidental DNAs that might have been released from dead cells of tdh- or trh-positive (tdh+ trh+) strains and penetrated the agar-coated filter. A set of preliminary laboratory tests performed on 190 ml of enrichment culture that had been inoculated simultaneously with ca. 100 viable cells of a strain of tdh+ trh+ V. parahaemolyticus and dense populations of a viable strain of tdh- and trh-negative V. parahaemolyticus or Vibrio alginolyticus indicated that the method detected the presence of viable tdh+ trh+ strains. Another set of preliminary tests on 190 ml of enrichment culture that had been initially inoculated with a large number of dead cells of the tdh+ trh+ strain together with dense populations of the tdh- and trh-negative strains confirmed that the method did not yield any false-positive results. Subsequent quasi-field tests using various seafood samples (ca. 20 g), each of which was experimentally contaminated with either or both hemolysin-producing strains at an initial density of ca. 5 to 10 viable cells per gram, demonstrated that contamination could be detected within 2 working days.  相似文献   

15.
The food-borne pathogen Vibrio parahaemolyticus has been reported as being present in New Zealand (NZ) seawaters, but there have been no reported outbreaks of food-borne infection from commercially grown NZ seafood. Our study determined the current incidence of V. parahaemolyticus in NZ oysters and Greenshell mussels and the prevalence of V. parahaemolyticus tdh and trh strains. Pacific (235) and dredge (21) oyster samples and mussel samples (55) were obtained from commercial shellfish-growing areas between December 2009 and June 2012. Total V. parahaemolyticus numbers and the presence of pathogenic genes tdh and trh were determined using the FDA most-probable-number (MPN) method and confirmed using PCR analysis. In samples from the North Island of NZ, V. parahaemolyticus was detected in 81% of Pacific oysters and 34% of mussel samples, while the numbers of V. parahaemolyticus tdh and trh strains were low, with just 3/215 Pacific oyster samples carrying the tdh gene. V. parahaemolyticus organisms carrying tdh and trh were not detected in South Island samples, and V. parahaemolyticus was detected in just 1/21 dredge oyster and 2/16 mussel samples. Numbers of V. parahaemolyticus organisms increased when seawater temperatures were high, the season when most commercial shellfish-growing areas are not harvested. The numbers of V. parahaemolyticus organisms in samples exceeded 1,000 MPN/g only when the seawater temperatures exceeded 19°C, so this environmental parameter could be used as a trigger warning of potential hazard. There is some evidence that the total V. parahaemolyticus numbers increased compared with those reported from a previous 1981 to 1984 study, but the analytical methods differed significantly.  相似文献   

16.
Vibrio parahaemolyticus is a gram-negative, halophilic bacterium indigenous to marine and estuarine environments and it is capable of causing food and water-borne illness in humans. It can also cause disease in marine animals, including cultured species. Currently, culture-based techniques are used for quantification of V. parahaemolyticus in environmental samples; however, these can be misleading as they fail to detect V. parahaemolyticus in a viable but nonculturable (VBNC) state which leads to an underestimation of the population density. In this study, we used a novel fluorescence visualization technique, called recognition of individual gene fluorescence in situ hybridization (RING-FISH), which targets chromosomal DNA for enumeration. A polynucleotide probe labeled with Cyanine 3 (Cy3) was created corresponding to the ubiquitous V. parahaemolyticus gene that codes for thermolabile hemolysin (tlh). When coupled with the Kogure method to distinguish viable from dead cells, RING-FISH probes reliably enumerated total, viable V. parahaemolyticus. The probe was tested for sensitivity and specificity against a pure culture of tlh+, tdh, trhV. parahaemolyticus, pure cultures of Vibrio vulnificus, Vibrio harveyi, Vibrio alginolyticus and Vibrio fischeri, and a mixed environmental sample. This research will provide additional tools for a better understanding of the risk these environmental organisms pose to human health.  相似文献   

17.
Detection of the human pathogen Vibrio parahaemolyticus often relies on molecular biological analysis of species-specific virulence factor genes. These genes have been employed in determinations of V. parahaemolyticus population numbers and the prevalence of pathogenic V. parahaemolyticus strains. Strains of the Vibrionaceae species Photobacterium damselae, Vibrio diabolicus, Vibrio harveyi, and Vibrio natriegens, as well as strains similar to Vibrio tubiashii, were isolated from a pristine salt marsh estuary. These strains were examined for the V. parahaemolyticus hemolysin genes tdh, trh, and tlh and for the V. parahaemolyticus type III secretion system 2α gene vscC2 using established PCR primers and protocols. Virulence-related genes occurred at high frequencies in non-V. parahaemolyticus Vibrionaceae species. V. diabolicus was of particular interest, as several strains were recovered, and the large majority (>83%) contained virulence-related genes. It is clear that detection of these genes does not ensure correct identification of virulent V. parahaemolyticus. Further, the occurrence of V. parahaemolyticus-like virulence factors in other vibrios potentially complicates tracking of outbreaks of V. parahaemolyticus infections.  相似文献   

18.
副溶血性弧菌耐热性直接溶血素(TDH)的研究进展   总被引:2,自引:0,他引:2  
副溶血性弧菌(Vibrio parahaemolyticus)是海产品中一种常见的食源性致病菌,常导致水产养殖动物患病或者引起食物中毒。耐热性直接溶血素(thermotolerant direct hemolysin,TDH)是副溶血性弧菌最为重要的致病因子之一。本文围绕tdh基因在弧菌属中的广泛分布与传播、tdh基因的多样性及其表达调控、TDH的蛋白结构及其生物活性进行了综述,并对未来TDH的研究方向进行了展望。旨在进一步了解由副溶血性弧菌感染所引起的病症,为预防副溶血性弧菌的感染和临床治疗提供理论支撑。  相似文献   

19.
Potential virulence attributes, serotypes, and ribotypes were determined for 178 pathogenic Vibrio parahaemolyticus isolates from clinical, environmental, and food sources on the Pacific, Atlantic, and Gulf Coasts of the United States and from clinical sources in Asia. The food and environmental isolates were generally from oysters, and they were defined as being pathogenic by using DNA probes to detect the presence of the thermostable direct hemolysin (tdh) gene. The clinical isolates from the United States were generally associated with oyster consumption, and most were obtained from outbreaks in Washington, Texas, and New York. Multiplex PCR was used to confirm the species identification and the presence of tdh and to test for the tdh-related hemolysin trh. Most of the environmental, food, and clinical isolates from the United States were positive for tdh, trh, and urease production. Outbreak-associated isolates from Texas, New York, and Asia were predominantly serotype O3:K6 and possessed only tdh. A total of 27 serotypes and 28 ribogroups were identified among the isolates, but the patterns of strain distribution differed between the serotypes and ribogroups. All but one of the O3:K6 isolates from Texas were in a different ribogroup from the O3:K6 isolates from New York or Asia. The O3:K6 serotype was not detected in any of the environmental and food isolates from the United States, and none of the food or environmental isolates belonged to any of the three ribogroups that contained all of the O3:K6 and related clinical isolates. The combination of serotyping and ribotyping showed that the Pacific Coast V. parahaemolyticus population appeared to be distinct from that of either the Atlantic Coast or Gulf Coast. The fact that certain serotypes and ribotypes contained both clinical and environmental isolates while many others contained only environmental isolates implies that certain serotypes or ribotypes are more relevant for human disease.  相似文献   

20.
This study was aimed for the detection of Vibrio parahaemolyticus by biochemical and molecular methods in seafood samples collected from the markets of Cochin located at the southwest coast of India. A total of seventy-two V. parahaemolyticus cultures were isolated by selecting sucrose and cellobiose non-fermenting colonies. All the biochemically confirmed strains were found to have 368-bp toxR gene fragment, while an additional 24% of the samples were confirmed as V. parahaemolyticus by toxR based polymerase chain reaction (PCR) from enrichment broths. PCR based methods are used to detect tdh, trh, and orf8 genes for the identification of pathogenic and pandemic V. parahaemolyticus. Only one out of two urease positive isolates amplified the trh (500bp) gene. About 10% of the isolates showed weak haemolysis and none were found to amplify tdh (269 bp) and orf8 (746 bp) genes, thus indicating the meager incidence of pandemic strains from this area. The incidence of trh positive isolates from market samples signals towards the adoption of stringent seafood safety measures for the products meant for human consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号