首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
Plant metabolic activity in arid and semi-arid environments is largely tied to episodic precipitation events or “pulses”. The ability of plants to take up and utilize rain pulses during the growing season in these water-limited ecosystems is determined in part by pulse timing, intensity and amount, and by hydrological properties of the soil that translate precipitation into plant-available soil moisture. We assessed the sensitivity of an invasive woody plant, velvet mesquite (Prosopis velutina Woot.), to large (35 mm) and small (10 mm) isotopically labeled irrigation pulses on two contrasting soil textures (sandy-loam vs. loamy-clay) in semi-desert grassland in southeastern Arizona, USA. Predawn leaf water potential (Ψpd), the isotopic abundance of deuterium in stem water (δD), the abundance of 13C in soluble leaf sugar (δ13C), and percent volumetric soil water content (θv) were measured prior to irrigation and repeatedly for 2 weeks following irrigation. Plant water potential and the percent of pulse water present in the stem xylem indicated that although mesquite trees on both coarse- and fine-textured soils quickly responded to the large irrigation pulse, the magnitude and duration of this response substantially differed between soil textures. After reaching a maximum 4 days after the irrigation, the fraction of pulse water in stem xylem decreased more rapidly on the loamy-clay soil than the sandy-loam soil. Similarly, on both soil textures mesquite significantly responded to the 10-mm pulse. However, the magnitude of this response was substantially greater for mesquite on the sandy-loam soil compared to loamy-clay soil. The relationship between Ψpd and δ13C of leaf-soluble carbohydrates over the pulse period did not differ between plants at the two sites, indicating that differences in photosynthetic response of mesquite trees to the moisture pulses was a function of soil water availability within the rooting zone rather than differences in plant biochemical or physiological constraints. Patterns of resource acquisition by mesquite during the dynamic wetting–drying cycle following rainfall pulses is controlled by a complex interaction between pulse size and soil hydraulic properties. A better understanding of how this interaction affects plant water availability and photosynthetic response is needed to predict how grassland structure and function will respond to climate change.  相似文献   

2.
The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m−2) and 39.6% (61.7 g C m−2) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r 2 = 0.92, P<0.001) through the growing season. It indicates the pulse effect can be enhanced by not only larger individual rainfall event, but also higher soil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953–2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953–2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change.  相似文献   

3.
Global climate models predict that in the next century precipitation in desert regions of the USA will increase, which is anticipated to affect biosphere/atmosphere exchanges of both CO2 and H2O. In a sotol grassland ecosystem in the Chihuahuan Desert at Big Bend National Park, we measured the response of leaf-level fluxes of CO2 and H2O 1 day before and up to 7 days after three supplemental precipitation pulses in the summer (June, July, and August 2004). In addition, the responses of leaf, soil, and ecosystem fluxes of CO2 and H2O to these precipitation pulses were also evaluated in September, 1 month after the final seasonal supplemental watering event. We found that plant carbon fixation responded positively to supplemental precipitation throughout the summer. Both shrubs and grasses in watered plots had increased rates of photosynthesis following pulses in June and July. In September, only grasses in watered plots had higher rates of photosynthesis than plants in the control plots. Soil respiration decreased in supplementally watered plots at the end of the summer. Due to these increased rates of photosynthesis in grasses and decreased rates of daytime soil respiration, watered ecosystems were a sink for carbon in September, assimilating on average 31 mmol CO2 m−2 s−1 ground area day−1. As a result of a 25% increase in summer precipitation, watered plots fixed eightfold more CO2 during a 24-h period than control plots. In June and July, there were greater rates of transpiration for both grasses and shrubs in the watered plots. In September, similar rates of transpiration and soil water evaporation led to no observed treatment differences in ecosystem evapotranspiration, even though grasses transpired significantly more than shrubs. In summary, greater amounts of summer precipitation may lead to short-term increased carbon uptake by this sotol grassland ecosystem.  相似文献   

4.
从2013年12月至2014年11月,通过野外原位试验,对华西雨屏区常绿阔叶林进行了模拟氮沉降和降雨试验,采用LI-8100土壤碳通量分析系统(LI-COR Inc.,USA)测定了对照(CK)、氮沉降(N)、减雨(R)、增雨(W)、氮沉降+减雨(NR)、氮沉降+增雨(NW)6个处理水平的土壤呼吸速率,并通过回归方程分析了温度和湿度与土壤呼吸速率间的关系。结果表明:(1)氮沉降和增雨抑制了常绿阔叶林土壤呼吸速率,减雨促进了常绿阔叶林土壤呼吸速率。(2)减雨使华西雨屏区常绿阔叶林土壤呼吸年通量增加了258 g/m~2,而模拟氮沉降和增雨使华西雨屏区常绿阔叶林土壤呼吸年通量分别减少了321g/m~2和406g/m~2。(3)减雨增加了土壤呼吸的温度敏感性,模拟氮沉降和增雨降低了土壤呼吸的温度敏感性。(4)模拟温度和湿度与土壤呼吸速率间回归方程分析表明,土壤水分对土壤呼吸速率的影响较小。(5)模拟氮沉降和增雨处理减少土壤微生物生物量碳、氮的含量,减雨处理增加了土壤微生物生物量碳、氮的含量。(6)模拟氮沉降和降雨对华西雨屏区土壤CO_2释放的影响未表现出明显的交互作用。  相似文献   

5.
The ‘pulse–reserve’ conceptual model—arguably one of the most-cited paradigms in aridland ecology—depicts a simple, direct relationship between rainfall, which triggers pulses of plant growth, and reserves of carbon and energy. While the heuristics of ‘pulses’, ‘triggers’ and ‘reserves’ are intuitive and thus appealing, the value of the paradigm is limited, both as a conceptual model of how pulsed water inputs are translated into primary production and as a framework for developing quantitative models. To overcome these limitations, we propose a revision of the pulse–reserve model that emphasizes the following: (1) what explicitly constitutes a biologically significant ‘rainfall pulse’, (2) how do rainfall pulses translate into usable ‘soil moisture pulses’, and (3) how are soil moisture pulses differentially utilized by various plant functional types (FTs) in terms of growth? We explore these questions using the patch arid lands simulation (PALS) model for sites in the Mojave, Sonoran, and Chihuahuan deserts of North America. Our analyses indicate that rainfall variability is best understood in terms of sequences of rainfall events that produce biologically-significant ‘pulses’ of soil moisture recharge, as opposed to individual rain events. In the desert regions investigated, biologically significant pulses of soil moisture occur in either winter (October–March) or summer (July–September), as determined by the period of activity of the plant FTs. Nevertheless, it is difficult to make generalizations regarding specific growth responses to moisture pulses, because of the strong effects of and interactions between precipitation, antecedent soil moisture, and plant FT responses, all of which vary among deserts and seasons. Our results further suggest that, in most soil types and in most seasons, there is little separation of soil water with depth. Thus, coexistence of plant FTs in a single patch as examined in this PALS study is likely to be fostered by factors that promote: (1) separation of water use over time (seasonal differences in growth), (2) relative differences in the utilization of water in the upper soil layers, or (3) separation in the responses of plant FTs as a function of preceding conditions, i.e., the physiological and morphological readiness of the plant for water-uptake and growth. Finally, the high seasonal and annual variability in soil water recharge and plant growth, which result from the complex interactions that occur as a result of rainfall variability, antecedent soil moisture conditions, nutrient availability, and plant FT composition and cover, call into question the use of simplified vegetation models in forecasting potential impacts of climate change in the arid zones in North America.  相似文献   

6.
Ran Liu  Ellen Cieraad  Yan Li 《Plant and Soil》2013,373(1-2):799-811

Background and aims

The response of plants and soil to rain pulses determines seasonal variations in the exchange of materials and energy at the ecosystem scale in arid and semi-arid regions. We assessed how the ecosystem carbon exchange (NEE) of desert halophyte communities of different plant functional-types responds to summer precipitation pulses in Tamarix and Haloxylon communities.

Methods

Plant water status, photosynthetic gas exchange, soil respiration and net ecosystem carbon exchange were measured to test the hypothesis that high physiological sensitivity may induce a greater changes in NEE resulting from the summer precipitation pulses in Haloxylon community.

Results

Plant water status and photosynthetic assimilation did not differ before and after summer precipitation pulses in either community. In contrast, soil respiration and NEE responded strongly to summer precipitation events in both communities. At the ecosystem level, precipitation pulses induced a pulse of CO2 release, rather than absorption. The NEE response to summer precipitation was less in the deep-rooted Tamarix community, compared to the shallow-rooted Haloxylon community, which was even converted into a carbon source after summer precipitation inputs. As a result, the effect of summer precipitation inputs on soil respiration was more important than the plant (carbon assimilation) response in determining the ecosystem response to episodic precipitation pulses.  相似文献   

7.
Quantifying the controls on soil respiration is important for understanding ecosystem physiology and for predicting the response of soil carbon reservoirs to climate change. The majority of soil respiration is typically considered to occur in the top 20–30 cm of soils. In desert soils, where organic matter concentrations tend to be low and plants are deeply rooted, deeper respiration might be expected. However, little is known about the depth distribution of respiration in dryland soils. Here we show that the average depth of soil respiration between pulse precipitation events is almost always greater than 20 cm and is frequently greater than 50 cm in two central New Mexico desert shrublands. The average depth of soil respiration in a pi?on-juniper woodland was shallower, between 5 and 40 cm. In the shrublands, 8‰ seasonal variations in the carbon isotope composition of soil-respired CO213Cr-soil) that correlate with vapor pressure deficit support root/rhizosphere respiration as the dominant source of soil CO2. Such deep autotrophic respiration indicates that shrubs preferentially allocate photosynthate to deep roots when conditions near the surface are unfavorable. Therefore, respiration rates in these soils are not necessarily correlated with root biomass. The δ13Cr-soil values provide no evidence for CO2 evolved from soil inorganic carbon. Our results also suggest that organic carbon cycling is rapid and efficient in these soils and that the δ13C value of CO2 respired from soils in much of the southwestern US, and perhaps in other semiarid regions, varies seasonally by at least 4‰.  相似文献   

8.
水、氮控制对短花针茅草原土壤呼吸的影响   总被引:1,自引:0,他引:1  
在自然条件下,采用自动CO2通量系统(Li-8100,Li-COR,Lincoln,NE,USA)野外测定短花针茅(Stipa breviflora)草原土壤呼吸速率,并通过回归方程分析不同水分梯度和氮素添加与土壤呼吸速率间的关系。结果表明:(1)短花针茅草原整个生长季,增雨显著提高土壤呼吸速率(P0.05),土壤呼吸速率峰值出现在温度适中,土壤含水量最大的时期(8月初)。(2)从整个生长季来看,相同降雨量下,氮素添加对土壤呼吸速率增加有抑制作用,但在降雨较少的时(5月末到6月中旬,0月份),氮素添加对土壤呼吸速率有较少的促进作用。(3)土壤含水量和土壤呼吸速率的函数模型中一元二次函数模型明显优于线性、指数等模型。一元二次模型能更好地说明土壤呼吸速率的实际变化。  相似文献   

9.
Precipitation pulse size effects on Sonoran Desert soil microbial crusts   总被引:9,自引:0,他引:9  
Cable JM  Huxman TE 《Oecologia》2004,141(2):317-324
Deserts are characterized by low productivity and substantial unvegetated space, which is often covered by soil microbial crust communities. Microbial crusts are important for nitrogen fixation, soil stabilization and water infiltration, but their role in ecosystem production is not well understood. This study addresses the following questions: what are the CO2 exchange responses of crusts to pulses of water, does the contribution of crusts to ecosystem flux differ from the soil respiratory flux, and is this contribution pulse size dependent? Following water application to crusts and soils, CO2 exchange was measured and respiration was partitioned through mixing model analysis of Keeling plots across treatments. Following small precipitation pulse sizes, crusts contributed 80% of soil-level CO2 fluxes to the atmosphere. However, following a large pulse event, roots and soil microbes contributed nearly 100% of the soil-level flux. Rainfall events in southern Arizona are dominated by small pulse sizes, suggesting that crusts may frequently contribute to ecosystem production. Carbon cycle studies of arid land systems should consider crusts as important contributors because of their dynamic responses to different pulse sizes as compared to the remaining ecosystem components.  相似文献   

10.
Mangrove forests cover large areas of tropical and subtropical coastlines. They provide a wide range of ecosystem services that includes carbon storage in above- and below ground biomass and in soils. Carbon dioxide (CO2) emissions from soil, or soil respiration is important in the global carbon budget and is sensitive to increasing global temperature. To understand the magnitude of mangrove soil respiration and the influence of forest structure and temperature on the variation in mangrove soil respiration I assessed soil respiration at eleven mangrove sites, ranging from latitude 27°N to 37°S. Mangrove soil respiration was similar to those observed for terrestrial forest soils. Soil respiration was correlated with leaf area index (LAI) and aboveground net primary production (litterfall), which should aid scaling up to regional and global estimates of soil respiration. Using a carbon balance model, total belowground carbon allocation (TBCA) per unit litterfall was similar in tall mangrove forests as observed in terrestrial forests, but in scrub mangrove forests TBCA per unit litter fall was greater than in terrestrial forests, suggesting mangroves allocate a large proportion of their fixed carbon below ground under unfavorable environmental conditions. The response of soil respiration to soil temperature was not a linear function of temperature. At temperatures below 26°C Q10 of mangrove soil respiration was 2.6, similar to that reported for terrestrial forest soils. However in scrub forests soil respiration declined with increasing soil temperature, largely because of reduced canopy cover and enhanced activity of photosynthetic benthic microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号