首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
Recous  S.  Fresneau  C.  Faurie  G.  Mary  B. 《Plant and Soil》1988,112(2):205-214
Labelled urea or ammonium nitrate was applied to winter wheat growing on a loamy soil in Northern France. Two applications of fertilizer were given: 50 kg N ha–1 at tillering (early March) and 110 kg N ha–1 at the beginning of stem elongation (mid-April). The kinetics of urea hydrolysis, nitrification of ammonium and the disappearance of inorganic nitrogen were followed at frequent intervals. Inorganic nitrogen soon disappeared, mainly immobilized by soil microflora and absorbed by the crop. Net immobilization of fertilizer N occured at a very similar rate for urea and ammonium nitrate. Maximum immobilization (16 kg N ha1) was found at harvest for the first dressing and at anthesis for the second dressing (23 kg N ha1). During the nitrification period, the labelled ammonium pool was immobilized two to three times faster than the labelled nitrate pool. No significant net15N remineralization was found during the growth cycle.The actual denitrification and volatilization losses were probably more important than indicated from calculations made by extrapolation of fluxes measured over short intervals. However microbial immobilization was the most important of the processes which compete with plant uptake for nitrogen.  相似文献   

2.
Labelled fertilizer N applied to winter wheat as Na15NO3 and (15NH4)2SO4 at a total N dressing of 100kg ha−1 was used in a microplot balance study to investigate the fate of each split fraction at three growth stages: end of tillering, heading and beginning of flowering. Results indicated that while the percentage utilization of the applied N by the grain and total crop increased considerably from the first to the third split application, these values diminished steadily in the straw. Grain recovery values for the first, second and third split applications were 34.2%, 51.5% and 55.7% for the NO3 and 32.3%, 48.4% and 52.5% for the NH4 carrier, respectively. The corresponding recovery values for the whole plant were 54.6%, 67.8% and 69.9% for the NO3 and 51.7%, 63.5% and 66.1% for the NH4 carrier. A greater proportion of the fertilizer N applied at the end of tillering stage was found in the vegetative plant components as compared with the grain. The reverse occurred for the N applied at the heading and at the beginning of the flowering stages. The residual fertilizer N found in the soil amounted to 18.0%, 10.4% and 11.6% of the applied NO3−N and to 22.5%, 12.7% and 15.2% of the applied NH4−N for the respective split applications. No differences were found for each split application between the two carriers as far as the unaccounted fertilizer N was concerned. The losses were 26.6%, 22.3% and 18.6% of the applied N for the three split applications, respectively. The application of fertilizer N did not lead to any increase in soil N uptake by the crop.  相似文献   

3.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

4.
Summary The fate of 100 kg N ha–1 applied as15N-urea and its modified forms was followed in 4 successive field-grown wetland rice crops in a vertisol. The first wet season crop recovered about 27 to 36.6% of the applied N depending upon the N source. In subsequent seasons the average uptake was very small and it gradually decreased from 1.4 to 0.5 kg N ha–1 although about 18 to 20, 12 to 17 and 14 to 18 kg ha–1 residual fertilizer N was available in the root zone after harvest of first, second and third crops, respectively. The average uptake of the residual fertilizer N was only 7.6% in the second crop and it decreased to 4.5% in the third and to 3.2% in the fourth crop although all these crops were adequately fertilized with unlabelled urea. The basal application of neem coated urea was more effective in controlling the leaching loss of labelled NH4+NO3–N than split application of uncoated urea. In the first 3 seasons in which15N was detectable, the loss of fertilizer N through leaching as NH4+NO3–N amounted to 0.5 kg ha–1 from neem-coated urea, 1.5 kg from split urea and 4.1 kg from coal tar-coated urea. At the end of 4 crops, most of the labelled fertilizer N (about 69% on average) was located in the upper 0–20 cm soil layer showing very little movement beyond this depth. In the profile sampled upto 60 cm depth, totally about 13.8 kg labelled fertilizer N ha–1 from neem-coated urea, 12.7 kg from coal-tar coated urea, and 11.8 kg from split urea were recovered. The average recovery of labelled urea-N in crops and soil during the entire experimental period ranged between 42 and 51%. After correcting for leaching losses, the remaining 47 to 56% appeared to have been lost through ammonia volatilization and denitrification.  相似文献   

5.
Ledgard  S.F.  Sprosen  M.S.  Penno  J.W.  Rajendram  G.S. 《Plant and Soil》2001,229(2):177-187
Effects of rate of nitrogen (N) fertilizer and stocking rate on production and N2 fixation by white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L.) were determined over 5 years in farmlets near Hamilton, New Zealand. Three farmlets carried 3.3 dairy cows ha–1 and received urea at 0, 200 or 400 kg N ha–1 yr–1 in 8–10 split applications. A fourth farmlet received 400 kg N ha–1 yr–1 and had 4.4 cows ha–1.There was large variation in annual clover production and total N2 fixation, which in the 0 N treatment ranged from 9 to 20% clover content in pasture and from 79 to 212 kg N fixed ha–1 yr–1. Despite this variation, total pasture production in the 0 N treatment remained at 75–85% of that in the 400 N treatments in all years, due in part to the moderating effect of carry-over of fixed N between years.Fertilizer N application decreased the average proportion of clover N derived from N2 fixation (PN; estimated by 15N dilution) from 77% in the 0 N treatment to 43–48% in the 400 N treatments. The corresponding average total N2 fixation decreased from 154 kg N ha–1 yr–1 to 39–53 kg N ha–1 yr–1. This includes N2 fixation in clover tissue below grazing height estimated at 70% of N2 fixation in above grazing height tissue, based on associated measurements, and confirmed by field N balance calculations. Effects of N fertilizer on clover growth and N2 fixation were greatest in spring and summer. In autumn, the 200 N treatment grew more clover than the 0 N treatment and N2 fixation was the same. This was attributed to more severe grazing during summer in the 0 N treatment, resulting in higher surface soil temperatures and a deleterious effect on clover stolons.In the 400 N treatments, a 33% increase in cow stocking rate tended to decrease PN from 48 to 43% due to more N cycling in excreta, but resulted in up to 2-fold more clover dry matter and N2 fixation because lower pasture mass reduced grass competition, particularly during spring.  相似文献   

6.
Li  Hong  Parent  Léon E.  Karam  Antoine  Tremblay  Catherine 《Plant and Soil》2003,251(1):23-36
It was hypothesized that soil N variability, and fertilization and cropping management affect potato (Solanum tuberosum L.) growth and fertilizer N efficiency. Following a 20-year sod breakup on a loamy soil in eastern Quebec, Canada (46°37 N, 71°47 W), we conducted a 3-year (1993–1995) study to investigate the effects of soil pool N and fertilizer N management on non-irrigated potato (cv. Superior) tuber yield, fertilizer N recovery (NRE), and residual N distribution in soils under humid, cool and acid pedoclimatic conditions. The fertilizer N treatments consisted of a control, side-dress at rates of 70, 105 and 140 kg ha–1, and split applications (at seeding and bloom) at rates of 70+70, 105+70 and 140+70 kg ha–1, respectively. Soil acidity was corrected with limestone following the plow down of the sod. Years of cropping, main effect of N treatment, and year and fertilizer N interaction were significant on total and marketable tuber yields and N uptake, which were significantly related to soil N, and root growth. Apparent NRE ranged between 29 and 70%, depending on years and N rates. Total tuber yield, N uptake, soil N use and NRE were significantly higher in the first (sod–potato) year, but decreased by 41.8, 22.7, 21.4 and 14.7%, respectively, in the third (sod–potato–potato–potato) year. Initial soil N pool was declined by 75% following the 3-year cropping. In 2–3 years, the side-dress N (140 kg ha–1) increased significantly tuber yields (11.4–19.8%) compared to the split N (70+70 kg ha–1). Higher split N had no effect on tuber yield and N uptake but increased residual N at harvest. Unused fertilizer N was strongly linked (R 2=0.98) to fertilizer N rates. Time factor and N treatment had significant effects (P<0.0001) on loss of N to below the root zone. Smaller scale rate and timing of split N need to be further determined. Increasing fertilizer N use efficiency could be expected with sod breakup and 75% of regional recommendation rate under humid, cool and acid pedoclimatic conditions.  相似文献   

7.
The fate of N from sugarbeet (Beta vulgaris L.) tops returned to the soil (50 T ha-1) in autumn 1986 before sowing winter wheat (Triticum aestivum L.), and from NaNO3 split-applied in 3 equal dressings (at tillering, stem elongation and flag leaf stages) was studied using isotopically labelled 15N in open stainless-steel cylinders pressed into the soil.At harvest, the percentage utilization (PU) of N from sugarbeet was very low (6.66%) and negatively influenced by fertilizer N (5.59%), while that of fertilizer N was rather high (69.64%) and unchanged by addition of tops. Residual N in soil represented 25.9% of the amount applied in tops and ranged from 33% for the tillering application to 21% for the flag leaf application. N losses (mainly denitrification) from sugar beet tops amounted to 67% and were very low for mineral fertilizer (less than 5%).  相似文献   

8.
Summary A field experiment was performed to assess the effects of Rhizobium inoculation and nitrogen fertilizer (100 kg N ha–1) on four cultivars of Phaseolus beans; Carioca, Negro Argel, Venezuela 350 and Rio Tibagi. In the inoculated treatment 2.5 kg N ha–1 of15N labelled fertilizer was added in order to apply the isotope dilution technique to quantify the contribution of N2 fixation to the nutrition of these cultivars.Nodulation of all cultivars in the uninoculated treatments was poor, but the cultivars Carioca and Negro Argel were well nodulated when inoculated. Even when inoculated, nodulation of the cultivars Venezuela 350 and Rio Tibagi was poor and these cultivars showed little response to inoculation in terms of nitrogen accumulation or grain yield. The estimates of the contribution of N2 fixation estimated using the isotope dilution technique, for the Carioca and Negro Argel cultivars, amounted to 31.7 and 18.4 kg N ha–1 respectively. These two cultivars produced 991 and 883 kg ha–1 of grain, respectively, when inoculated and 663 and 620 kg ha–1 with the addition of 100 kg N ha–1 of N fertilizer. The response to nitrogen was particularly poor due to high leaching losses in the very sandy soil at the experimental site.The Venezuela 350 and Rio Tibagi cultivars only responded to N fertilizer and not to inoculation with Rhizobium which stresses the great importance of selecting plant cultivars for nitrogen fixation in the field.  相似文献   

9.
A mixed pasture comprising of buffel grass and a legume siratro was studied under field condition for a two-year period to know the fodder yield increase, nitrogen fixation and nitrogen balance with and without the inoculation of VA mycorrhiza to grass and Rhizobium to legume component.15N dilution technique was followed using labelled ammonium sulphate. The data showed that during the first year of the above study combined inoculation of VA mycorrhiza and Rhizobium to grass and legume respectively significantly increased the total dry matter (DM) (23,900 kg ha–1 yr–1) and total N content (308 kg ha–1 yr–1) of the mixed pasture over the uninoculated mixture. However, the above increase due to combined inoculation was maximum during second year with respect to DM yield (28,200 kg ha–1 yr–1), but the total N harvested through grass-legume mixture was comparatively lower than the first year (297 kg ha–1 yr–1). The amount of biologically fixed N was highest in the first year (79 kg ha–1 yr–1) and showed a very drastic reduction at the end of second year (39 kg ha–1 yr–1). A positive nitrogen balance was observed in the grass-legume mixture irrespective of inoculation of VA mycorrhiza and/or Rhizobium.  相似文献   

10.
Destain  J. P.  Francois  E.  Guiot  J.  Goffart  J. P.  Vandergeten  J. P.  Bodson  B. 《Plant and Soil》1993,155(1):367-370
Since 1986, the fate of fertilizer N (NH4NO3 or NaNO3) applied in field conditions on two main arable crops, winter wheat (Triticum aestivum) and sugar beet (Beta vulgaris), has been studied using 15N. Up to a rate of 200 kg ha-1 of N, mean recovery of fertilizer by winter wheat was 70%, provided it had been split applied. Single application (with or without dicyandiamid) was less effective. For sugar beet, in 1990, 1991 and 1992, 40% of fertilizer N was found in the crop at harvest when NH4NO3 had been broadcast at 100 to 160 kg N ha-1 at sowing time. For the same N rate, recovery was 50% when row applied near the seeds and 60% for 80 kg N ha-1. For the two experimental crops, residual fertilizer N in soil was exclusively organic. It ranged from 15 to 30% of applied N and was located in the 30 cm upper layer. Losses were generally lower with winter wheat (12%) than with sugar beet (20–40%) and could be ascribed to volatilization and denitrification. Soil derived N taken up by the plant was site and year dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号