首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
以中华根瘤菌NP1(Sinorhizobium sp. NP1)为原始菌株,通过同源克隆的方法,获得了579 bp的腺苷酸激酶基因(adk)全长序列. 该基因编码192个氨基酸,其二级结构和三级结构与Sinorhizobium meliloti 1021 ADK的二级结构和三级结构相似. 以表达载体pET21b为原始载体,构建成NP1 adk原核表达载体pET21b-adk,转化E.coli BL21菌株, SDS-PAGE检测表明:adk基因获得高效表达. HPLC测定证实:重组表达菌中ATP含量约为对照的1.3倍. 上述结果证明本实验中所克隆的腺苷酸激酶基因具增强ATP合成的功能.  相似文献   

2.
【目的】家蚕微孢子虫Nosema bombycis ADP/ATP转运蛋白可能参与搬运宿主细胞的能量。本研究克隆家蚕微孢子虫ADP/ATP转运蛋白基因,并进行原核表达、抗体制备及间接免疫荧光定位,为控制和防治家蚕微粒子病提供理论基础。【方法】通过同源序列比对鉴定家蚕微孢子虫N. bombycis ADP/ATP转运蛋白序列,采用生物合成的方法将编码3段面向膜内侧肽段的核酸序列拼接合成,在其两端引入BglⅡ和SalⅠ酶切位点,克隆至pUC57载体并测序,再亚克隆至含有二氢叶酸还原酶(dihydrofolate reductase,DHFR)标签的表达载体pQE40中,然后利用BamHⅠ和SalⅠ酶切获得含有DHFR标签的重组序列,并连接至pET30a(+)载体中进行诱导表达。通过SDS-PAGE、镍柱亲和层析和免疫印迹法鉴定表达蛋白,利用间接免疫荧光对ADP/ATP转运蛋白的分布进行检测。【结果】家蚕微孢子虫的ADP/ATP转运蛋白编码序列(GenBank登录号为EOB13854.1)全长1 524 bp,编码蛋白含有507个氨基酸残基,预测分子质量为59 kDa,等电点为9.35。具有12个跨膜结构域和TLC结构域,其中TLC结构域含有4个功能保守位点。与蜜蜂微孢子虫的ADP/ATP转运蛋白比较,氨基酸序列一致性达30%。系统进化分析表明微孢子虫ADP/ATP转运蛋白聚为一类,具有共同的起源。成功构建了NbADP/ATP-△TM-DHFR-pET30a原核表达重组质粒,目的基因获得表达,其融合蛋白分子量约为37 kDa,纯化重组蛋白并制备了多克隆抗体。免疫印迹分析表明,成熟微孢子虫中表达ADP/ATP转运蛋白;间接免疫荧光定位结果显示,家蚕微孢子虫孢子ADP/ATP转运蛋白定位于孢子质膜上。【结论】本研究将为阻断微孢子虫能量来源,达到控制和防治家蚕微粒子病提供新的思路。  相似文献   

3.
丙酮酸磷酸双激酶(pyruvate phosphate dikinase, PPDK; EC 2.7.9.1)能够可逆催化磷酸烯醇式丙酮酸(phosphoenolpyruvate, PEP)、单磷酸腺苷(adenosine monophosphate, AMP)和焦磷酸盐(pyrophosphate, PPi)生成三磷酸腺苷(adenosine triphosphate, ATP)、无机磷酸盐(orthophosphate, Pi)和丙酮酸(pyruvate).以热玫瑰小双孢菌基因组DNA为模板,PCR扩增得到了编码PPDK的基因,将此基因片段插入表达载体pET24a (+),在大肠杆菌中表达C端融合His-Tag的重组PPDK.与我们先前表达的N端融合His-Tag的PPDK相比,酶的活性提高了20倍,提示该酶的N端对活性十分重要.重组PPDK单体分子量为98 kD.经过镍亲和层析和超滤后,重组PPDK基本达到电泳纯.重组PPDK与荧光素酶偶联能够形成1个ATP-AMP循环反应,在该循环反应中,荧光素酶催化ATP生成的AMP和PPi能够被PPDK重新转化成ATP,产生一个持续稳定的信号.  相似文献   

4.
构建高效的腺嘌呤核苷三磷酸(adenosinetriphosphate,ATP)再生体系可显著提高生物催化磷酸基团转移反应的效率。多聚磷酸激酶(poly phosphate kinase, PPK)能利用来源广、廉价且稳定的多聚磷酸(polyphosphate, Poly P)盐作为磷酸基供体,能够实现单磷酸腺苷(adenosine monophosphate,AMP)、二磷酸腺苷(adenosinediphosphate,ADP)、ATP、PolyP之间磷酸基的高效定向转移,已成为构建ATP再生体系的首选。本文介绍了不同类型PPK的结构特征、相关催化机制以及不同来源的PPK在酶活、催化效率、稳定性和底物偏好性的特征差异;归纳和列举了针对野生PPK酶学性质不足进行分子改造的实例,并对PPK在ATP再生体系构建的研究进展进行了总结。  相似文献   

5.
【目的】对进口竹荚鱼中分离的一株病原菌S1-2进行鉴定,并在大肠杆菌中表达其鞭毛蛋白。【方法】采用全自动微生物鉴定仪和革兰氏阳性菌鉴定卡进行生理生化反应测试,利用iap基因实时荧光PCR特异性扩增检测病原菌。通过PCR技术扩增病原菌S1-2的鞭毛蛋白flaA基因,克隆筛选和测序鉴定后,构建该基因的原核表达质粒pET22b-flaA,镍柱法纯化表达产物,通过免疫印迹鉴定其免疫原性。【结果】分离病原菌为革兰氏阳性菌,生理生化特征与单核细胞增生李斯特菌(Listeria monocytogenes)的相似性为99%,协同溶血实验在靠近金黄色葡萄球菌的接种端溶血增强。SDS-PAGE结果表明融合表达产物分子量约为32 kD,Western blot结果表明重组表达的鞭毛蛋白具有免疫原性。【结论】flaA基因的原核表达为制备单核细胞增生李斯特菌的单克隆抗体及其检测方法的建立奠定了基础。  相似文献   

6.
摘要:【目的】利用大肠杆菌BL21λDE3的表达系统,表达出有活性的鼠疫耶尔森氏菌(以下简称鼠疫菌)调控子蛋白H-NS,为进一步研究H-NS的转录调控奠定基础。【方法】 PCR扩增鼠疫菌201株hns基因的编码区,将其直接克隆入pET28a质粒中,再将pET28a-hns重组质粒转入大肠杆菌BL21λDE3菌株中,所得菌株经IPTG诱导后能表达出鼠疫菌His-H-NS蛋白;通过体外的凝胶迁移实验(EMSA)和DNaseⅠ足迹实验对His-H-NS蛋白与DNA的结合活性进行分析。【结果】成功表达出有活性的鼠疫菌His-H-NS蛋白,该蛋白对鼠疫菌pH6抗原基因(psaA、psaE)及rovA基因均有结合活性。【结论】鼠疫菌His-H-NS具有DNA结合活性,说明H-NS能调控鼠疫菌基因的转录。  相似文献   

7.
【目的】克隆表达单增李斯特菌膜表面蛋白InternalinA(InlA),经免疫家兔获得多克隆抗体,为建立其免疫磁珠富集快速检测方法奠定基础。【方法】利用生物软件设计单增李斯特菌inlA基因的引物,通过PCR扩增出inlA基因,并将其克隆至pET28a()原核表达载体,转化大肠杆菌BL21进行优化表达。镍柱纯化表达产物,质谱鉴定重组蛋白,ELISA分析其免疫原性。免疫家兔,制备其多克隆抗体。间接ELISA检测多抗的效价及交叉性,免疫荧光分析多抗与单增李斯特菌菌体结合的特异性。【结果】成功表达了InlA蛋白,融合表达产物分子量约为92 kD,质谱鉴定其为InlA蛋白;免疫家兔获得的抗血清效价为1:100 000,除与金黄色葡萄球菌约20%的交叉外,与副溶血弧菌等其它病源菌均无交叉;免疫荧光证实该多抗特异性结合于单增李斯特菌膜表面,与同种属的威尔斯李斯特菌不结合。【结论】成功制备了单增李斯特菌特异性的兔多克隆抗体,为单增李斯特菌免疫磁珠富集快速检测方法的建立奠定了基础。  相似文献   

8.
抗对硫磷基因工程新型抗体的制备及初步鉴定   总被引:1,自引:0,他引:1  
摘要: 【目的】提高抗对硫磷抗体的亲和力以提高酶联免疫检测的灵敏度。【方法】本研究通过抗对硫磷单链抗体基因和核心链霉亲和素基因片段的拼接重组,获得抗对硫磷单链抗体-核心链霉亲和素融合基因(scfv-sa),并将该融合基因(scfv-sa)插入到表达载体pET28a(+)中,转化大肠杆菌BL21(DE3)进行原核表达,制备融合蛋白。SDS-PAGE和Western blot鉴定scfv-sa的表达,Ni+-NTA亲和层析柱纯化融合蛋白,并用ELISA方法测定该融合抗体的亲和力。【结果】结果表明,在大肠杆菌BL21(DE3)中该融合基因能表达出分子量约为46kD的融合蛋白,形成了四价结构域-四价聚合抗体。ELISA测定结果表明该抗体能与对硫磷特异结合,抗体效价在1:1×106以上,亲和常数为4.25×107 L /mol。 【结论】制备的抗对硫磷四价聚合抗体能与抗原特异结合,与单克隆抗体相比,抗原结合位点显著增加,ELISA检测灵敏度显著提高。  相似文献   

9.
黄欣  李益民  杜聪  袁文杰 《生物工程学报》2022,38(12):4669-4680
聚磷酸激酶(polyphosphate kinase,PPK)在体外催化合成ATP的反应中有着重要作用。为寻找能利用短链聚磷酸盐(polyphosphate,polyP)为底物高效合成ATP的聚磷酸激酶,本文以来源于泗阳鞘氨醇杆菌(Sphingobacterium siyangensis)的聚磷酸激酶(PPK2)为研究目标,利用pET-29a构建重组质粒,在大肠杆菌(Escherichia coli)BL21(DE3)中表达,并将其作为ATP再生系统的关键酶与l-氨基酸连接酶(YwfE)联用生产丙谷二肽(Ala-Gln)。ppk2长度为810bp,编码270个氨基酸;SDS-PAGE结果表明PPK2为可溶性表达,分子量为29.7kDa。对PPK2的最适反应条件进行了优化,结果发现其在22–42℃、pH7–10的范围内均可以保持较好活性,且在37℃、pH为7、镁离子(Mg2+)浓度为30mmol/L、底物ADP与六偏磷酸钠浓度分别为5mmol/L和10mmol/L时酶活最大,在0.5h时ATP产率可以达到理论值的60%以上。作为模式反应体系,当PPK2与YwfE联用生产Ala-Gln时,达到与直接添加ATP相同的效果。此聚磷酸激酶作为ATP再生系统具有较好的适用性,适用的温度和pH范围广,且能以廉价易得的短链polyP为底物高效合成ATP,为依赖ATP的催化反应体系的能量再生提供了新酶的来源。  相似文献   

10.
【背景】L-异亮氨酸(L-isoleucine,L-Ile)和L-别异亮氨酸(L-allo-isoleucine,L-allo-Ile)是自然界中广泛存在的一对同分异构体。抗感染抗生素Desotamides结构中含L-别异亮氨酸结构单元,其生物合成途径中的氨基转移酶DsaD和异构酶DsaE可以协作催化L-异亮氨酸和L-别异亮氨酸相互转化。【目的】通过理性设计,使氨基转移酶DsaD和异构酶DsaE融合表达,研究融合蛋白DsaDE催化异亮氨酸和别异亮氨酸相互转化的功能。【方法】利用PCR分别扩增dsaE基因编码区DNA片段、以及含dsaD基因编码区和114个碱基接头序列的DNA片段dsaD-linker,利用酶切位点KpnI将dsaE和dsaD-linker相连,形成das DE重组序列,并克隆至pET28a(+)中,将重组质粒pET28a-dsaDE转化至Escherichia coli BL21(DE3)中进行融合表达,利用Ni-NTA亲和层析法纯化融合蛋白DsaDE;分别以L-异亮氨酸和L-别异亮氨酸为底物进行融合蛋白的体外酶活性检测,利用高效液相色谱对酶反应产物进行分析。【结果】PCR验证、酶切验证以及测序结果证明pET28a-dsaDE重组载体具有正确序列;N-末端和C-末端融合6个组氨酸标签的融合蛋白DsaDE在E. coli BL21(DE3)中获得可溶性表达,经Ni-NTA亲和层析法一步纯化获得纯度约95%的融合蛋白,纯化的融合蛋白DsaDE具有较好的活性,能够催化L-isoleucine和L-allo-isoleucine间的相互转化。【结论】氨基转移酶DsaD和异构酶DsaE成功融合表达,经一步Ni-NTA亲和层析法纯化即可获得纯度较高的融合蛋白,融合蛋白同时具有氨基转移酶和异构酶的活性,为进一步研究L-别异亮氨酸的工业化生产奠定了基础。  相似文献   

11.
We developed an ultrasensitive bioluminescence assay of ATP by employing (i) adenylate kinase (ADK) for converting AMP + ATP to two molecules of ADP, (ii) polyphosphate (polyP) kinase (PPK) for converting ADP back to ATP (ATP amplification), and (iii) a commercially available firefly luciferase. A highly purified PPK-ADK fusion protein efficiently amplified ATP, resulting in high levels of bioluminescence in the firefly luciferase reaction. The present method, which was approximately 10,000-fold more sensitive to ATP than the conventional bioluminescence assay, allowed us to detect bacterial contamination as low as one colony-forming unit (CFU) of Escherichia coli per assay.  相似文献   

12.
Polyphosphate is ubiquitous among living organisms and has a variety of biochemical functions. Arbuscular mycorrhizal fungi have been known to accumulate polyphosphate as a key compound for their function. However, an enzymatic assay using polyphosphate kinase (PPK) reverse reaction, in which polyphosphate is converted to adenosine triphosphate (ATP) and quantified by luciferase assay, failed to detect accumulation of polyphosphate in some mycorrhizal root. When yeast exopolyphosphatase (PPX) was applied to these samples, a much higher polyphosphate level was detected than when the PPK assay was applied. Detailed analysis of substrate chain length specificity of these methods using polyphosphate chain length standards revealed that the PPX method was the most appropriate to detect short-chain polyphosphate. The average chain length of the shortest polyphosphate fraction that could be quantified with more than 50% efficiency was 3 for the PPX method and 38 for the PPK method. It was also suggested that the ratio of the PPK value to the PPX value may be useful as a simple and relative index to compare polyphosphate chain length distribution in different samples.  相似文献   

13.
S Sadis  L E Hightower 《Biochemistry》1992,31(39):9406-9412
The mammalian 70-kilodalton heat shock cognate protein (Hsc70) is an abundant, cytosolic molecular chaperone whose interactions with protein substrates are regulated by ATP hydrolysis. In vitro, purified Hsc70 was found to have a slow, intrinsic ATPase activity in the absence of protein substrates. The addition of an unfolded protein such as apocytochrome c stimulated ATP hydrolysis 2-3-fold. In contrast, the native holoprotein, cytochrome c, did not stimulate the ATPase rate, in accord with recent observations that 70-kilodalton heat shock proteins interact selectively with unfolded proteins. Stimulation of ATP hydrolysis by apocytochrome c was due to an increase in the Vmax, with no effect on the Km for ATP. Following hydrolysis of [3H]ATP, a relatively stable [3H]ADP.Hsc70 complex was formed. Release of [3H]ADP from Hsc70 was most efficient in the presence of other nucleotides such as ADP or ATP, suggesting that ADP release occurs as an ADP/ATP exchange reaction. The loss of radiolabeled ADP from Hsc70 in the presence of exogenous nucleotides followed first-order kinetics. In the presence of nucleotides, apocytochrome c induced a 2-fold increase in the rate of ADP release from Hsc70. Moreover, rate constants of the nucleotide exchange reaction measured in the absence and presence of apocytochrome c (0.16 and 0.34 min-1, respectively) closely matched the kcat values derived from ATP hydrolysis measurements (0.15 and 0.38 min-1, respectively). The results suggest that ADP release in a rate-limiting step in the Hsc70 ATPase reaction and that unfolded proteins stimulate ATP hydrolysis by accelerating the rate of ADP/ATP exchange.  相似文献   

14.
We constructed a novel ATP amplification reactor using a reciprocating-flow system to increase the number of ATP amplification cycles without an increase in backpressure. We previously reported a continuous-flow ATP amplification system that effectively and quantitatively amplified ATP and increased the sensitivity of a quantitative bioluminescence assay. However, it was difficult to increase the number of amplification cycles due to backpressure in the system. Because addition of immobilized adenylate kinase (ADK) and pyruvate kinase (PK) columns increased backpressure, the maximum number of ATP amplification cycles within column durability was only 4. In this study, ATP amplification was performed using a reciprocating-flow system, and 10 cycles of ATP amplification could be achieved without an increase in backpressure. As a result, ATP was amplified more than 100-fold after 10 cycles of reciprocating flow. The gradient of ATP amplification was approximately 1.76N. The backpressure on the columns was 0.03 MPa in 1–10 ATP amplification cycles, and no increases in backpressure were observed.  相似文献   

15.
The genes encoding four deoxynucleoside monophosphate kinase (dNMP kinase) enzymes, including ADK1 for deoxyadenylate monophosphate kinase (AK), GUK1 for deoxyguanylate monophosphate kinase (GK), URA6 for deoxycytidylate monophosphate kinase (CK), and CDC8 for deoxythymidylate monophosphate kinase (TK), were isolated from the genome of Saccharomyces cerevisiae ATCC 2610 strain and cloned into E. coli strain BL21(DE3). Four recombinant plasmids, pET17b-JB1 containing ADK1, pET17b-JB2 containing GUK1, pET17b-JB3 containing URA6, and pET17b-JB4 containing CDC8, were constructed and transformed into E. coli strain for over-expression of AK, GK, CK, and TK. The amino acid sequences of these enzymes were analyzed and a putative conserved peptide sequence for the ATP active site was proposed. The four deoxynucleoside diphosphates (dNDP) including deoxyadenosine diphosphate (dADP), deoxyguanosine diphosphate (dGDP), deoxycytidine diphosphate (dCDP), and deoxythymidine diphosphate (dTDP), were synthesized from the corresponding deoxynucleoside monophosphates (dNMP) using the purified AK, GK, CK, and TK, respectively. The effects of pH and magnesium ion concentration on the dNDP biosynthesis were found to be important. A kinetic model for the synthetic reactions of dNDP was developed based on the Bi-Bi random rapid equilibrium mechanism. The kinetic parameters including the maximum reaction velocity and Michaelis-Menten constants were experimentally determined. The study on dNDP biosynthesis reported in this article are important to the proposed bioprocess for production of deoxynucleoside triphosphates (dNTP) that are used as precursors for in vitro DNA synthesis. There is a significant advantage of using enzymatic biosyntheses of dNDP as compared to the chemical method that has been in commercial use.  相似文献   

16.
An optimized in vitro assay of 3'-phosphoadenylysulfate:galactosylceramide 3'-sulfotransferase (EC 2.8.2.11, galactosylceramide sulfotransferase, formerly known as galactocerebroside sulfotransferase) activity is presented, that can be used in crude homogenate of brain tissue of various developmental stages. The enzyme activity is determined by measuring the [35S]sulfatides formed by the enzymic transfer of [35S]sulfate from 3'-phosphoadenoside 5'-phospho [35S]sulfate to galactosylceramides. The sulfatide formation at 30 degrees C is linear up to 30 min and up to a protein concentration of 1 mg per 0.5 ml assay volume. The presence of 0.4% Triton X-100 and 50 micrometer exogenous bovine cerebrosides are optimal for enzyme activity. The pH optimum of the reaction is at pH 6.5 using 0.1 M imidazole buffer. The enzyme reaction is stimulated by NaCl, KCl, MgCl2, CaCl2, MnCl2, ATP and inhibited by ADP. The developmental enzyme activity pattern of mouse brain is the same, if derived from homogenates and microsomes, respectively, under our assay conditions.  相似文献   

17.
The control of pyruvate dehydrogenase activity by inactivation and activation was studied in intact mitochondria isolated from rabbit heart. Pyruvate dehydrogenase could be completely inactivated by incubating mitochondria with ATP, oligomycin, and NaF. This loss in dehydrogenase activity was correlated with the incorporation of 32P from [gamma-32P]ATP into mitochondrial protein(s) and with a decrease in the mitochondrial oxidation of pyruvate. ATP may be supplied exogenously, generated from endogenous ADP during oxidative phosphorylation, or formed from exogenous ADP in carbonyl cyanid p-trifluoromethoxyphenylhydrazone-uncoupled mitochondria. With coupled mitochondria the concentration of added ATP required to half-inactivate the dehydrogenase was 0.24 mM. With uncoupled mitochondria the apparent Km was decreased to 60 muM ATP. Inactivation of pyruvate dehydrogenase by exogenous ATP was sensitive to atractyloside, suggesting that pyruvate dehydrogenase kinase acts internally to the atractyloside-sensitive barrier. The divalent cation ionophore, A23187, enhanced the loss of dehydrogenase activity. Pyruvate dehydrogenase activity is regulated additionally by pyruvate, inorganic phosphate, and ADP. Pyruvate, in the presence of rotenone, strongly inhibited inactivation. This suggests that pyruvate facilitates its own oxidation and that increases in pyruvate dehydrogenase activity by substrate may provide a modulating influence on the utilization of pyruvate via the tricarboxylate cycle. Inorganic phosphate protected the dehydrogenase from inactivation by ATP. ADP added to the incubation mixture together with ATP inhibited the inactivation of pyruvate dehydrogenase. This protection may result from a direct action on pyruvate dehydrogenase kinase, as ADP competes with ATP, and an indirect action, in that ADP competes with ATP for the translocase. It is suggested that the intramitochondrial [ATP]:[ADP] ratio effects the kinase activity directly, whereas the cytosolic [ATP]:[ADP] ratio acts indirectly. Mg2+ enhances the rate of reactivation of the inactivated pyruvate dehydrogenase presumably by accelerating the rate of dephosphorylation of the enzyme. Maximal activation is obtained with the addition of 0.5 mM Mg2+..  相似文献   

18.
We constructed a novel ATP amplification reactor using a continuous-flow system, and this allowed us to increase the sensitivity of a quantitative bioluminescence assay by controlling the number of ATP amplification cycles. We previously developed a bioluminescence assay coupled with ATP amplification using a batch system. However, it was difficult to control the number of amplification cycles. In this study, ATP amplification was performed using a continuous-flow system, and significant linear correlations between amplified luminescence and initial ATP concentration were observed. When performing four cycles of continuous-flow ATP amplification, the gradient of amplification was 1.87N. Whereas the lower quantifiable level was 500 pM without amplification, values as low as 50 pM ATP could be measured after amplification. The sensitivity thus increased 10-fold, with further improvements expected with additional amplification cycles. The continuous-flow system thus effectively increased the sensitivity of the quantitative bioluminescence assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号