首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of barley stripe mosaic hordeivirus (BSMV) was studied on the ultrastructure of etioplasts, protochlorophyllide forms and the greening process of barley ( Hordeum vulgare cv. Pannónia) plants infected by seed transmission. The leaves of 7- to 11-day-old etiolated seedlings were examined by transmission electron microscopy, fluorescence and absorption spectroscopy. The etioplasts of infected seedlings contained smaller prolamellar bodies with less regular membrane structure, while prothylakoid content was higher than in the control. The protochlorophyllide content of virus-infected seedlings was reduced to 74% of the control. In the 77 K fluorescence spectra the relative amount of 655 nm emitting photoactive protochlorophyllide form decreased, and the amount of the 645 and 633 nm emitting forms increased in the infected leaves. A characteristic effect was observed in the process of the Shibata-shift: 40 min delay was observed in the infected leaves. The results of this work proved that BSMV infection delays or inhibits plastid development and the formation of photosynthetic apparatus.  相似文献   

2.
The contents of protochlorophyllide, protochlorophyll and chlorophyll together with the native arrangements of the pigments and the plastid ultrastructure were studied in different leaf layers of white cabbage (Brassica oleracea cv. capitata) using absorption, 77 K fluorescence spectroscopy and transmission electron microscopy. The developmental stage of the leaves was determined using the differentiation of the stoma complexes as seen by scanning electron microscopy and light microscopy. The pigment content showed a gradual decrease from the outer leaf layer towards the central leaves. The innermost leaves were in a primordial stage in many aspects; they were large but had typical proplastids with few simple inner membranes, and contained protochlorophyllide and its esters in a 2 : 1 ratio and no chlorophyll. Short‐wavelength, not flash‐photoactive protochlorophyllide and/or protochlorophyll forms emitting at 629 and 636 nm were dominant in the innermost leaves. These leaves also had small amounts of the 644 and 654 nm emitting, flash‐photoactive protochlorophyllide forms. Rarely prolamellar bodies were observed in this layer. The outermost leaves had the usual characteristics of fully developed green leaves. The intermediary layers contained chlorophyll a and chlorophyll b besides the protochlorophyll(ide) pigments and had various intermediary developmental stages. Spectroscopically two types of intermediary leaves could be distinguished: one with only a 680 nm emitting chlorophyll a form and a second with bands at 685, 695 and 730 nm, corresponding to chlorophyll–protein complexes of green leaves. In these leaves, a large variety of chloroplasts were found. The data of this work show that etioplasts, etio‐chloroplasts or chloro‐etioplasts as well as etiolated leaves do exist in the nature and not only under laboratory conditions. The specificity of cabbage leaves compared with those of dark‐grown seedlings is the retained primordial or intermediary developmental stage of leaves in the inner layers for very long (even for a few month) period. This opens new developmental routes leading to formation of specially developed plastids in the various cabbage leaf layers. The study of these plastids provided new information for a better understanding of the plastid differentiation and the greening process .  相似文献   

3.
Annamária Kósa 《BBA》2006,1757(7):811-820
Artificial formation of flash-photoactive oligomeric protochlorophyllide complexes was found in etiolated pea (Pisum sativum L. cv. Zsuzsi) epicotyl homogenates containing glycerol (40% v/v) and sucrose (40% m/v). The 77 K fluorescence emission spectra indicated that the ratio of the 644 and 655 nm emitting forms to the 636 nm form increased during 3 to 5-day incubation in the dark at −14 °C. Electron micrographs showed the presence of well-organized prolamellar bodies in the homogenates. The same phenomena were found when the homogenates were frozen into liquid nitrogen and thawed to room temperature in several cycles. Similar treatments of intact epicotyl pieces caused significant membrane destructions. In homogenates, the in vitro produced 644 and 655 nm emitting protochlorophyllide forms were flash-photoactive; the extent of phototransformation increased compared to that in native epicotyls. The newly appeared 692 nm chlorophyllide band showed a blue shift (similar to the Shibata shift in leaves), however this process took place only partially due to the effect of the isolation medium.These results prove that the in vitro accumulated 644 and 655 nm protochlorophyllide forms were produced from the flash-photoactive 636 nm emitting monomeric NADPH:protochlorophyllide oxidoreductase units via aggregation, in connection with structure stabilization properties of glycerol and sucrose.  相似文献   

4.
Artificial formation of flash-photoactive oligomeric protochlorophyllide complexes was found in etiolated pea (Pisum sativum L. cv. Zsuzsi) epicotyl homogenates containing glycerol (40% v/v) and sucrose (40% m/v). The 77 K fluorescence emission spectra indicated that the ratio of the 644 and 655 nm emitting forms to the 636 nm form increased during 3 to 5-day incubation in the dark at -14 degrees C. Electron micrographs showed the presence of well-organized prolamellar bodies in the homogenates. The same phenomena were found when the homogenates were frozen into liquid nitrogen and thawed to room temperature in several cycles. Similar treatments of intact epicotyl pieces caused significant membrane destructions. In homogenates, the in vitro produced 644 and 655 nm emitting protochlorophyllide forms were flash-photoactive; the extent of phototransformation increased compared to that in native epicotyls. The newly appeared 692 nm chlorophyllide band showed a blue shift (similar to the Shibata shift in leaves), however this process took place only partially due to the effect of the isolation medium. These results prove that the in vitro accumulated 644 and 655 nm protochlorophyllide forms were produced from the flash-photoactive 636 nm emitting monomeric NADPH:protochlorophyllide oxidoreductase units via aggregation, in connection with structure stabilization properties of glycerol and sucrose.  相似文献   

5.
The inner membranes from wheat ( Triticum aestivum L. cv. Walde) etioplasts were separated into membrane fractions representative of prolamellar bodies and prothylakoids by differential and gradient centrifugations. The isolated fractions were characterized by absorption-, low-temperature fluorescence-, and circular dichroism (CD) spectroscopy, by high performancy liquid chromatography and by sodium dodecyl sulphate polyacrylamide gel electrophoresis.
The prolamellar body fraction was enriched in NADPH-protochlorophyllide oxidoreductase (E.C. 1.6.99.1), and in protochlorophyllide showing an absorption maximum at 650 nm and a fluorescence emission maximum at 657 nm. Esterified protochlorophyllide was mainly found in the prothylakoid fraction. The carotenoid content was qualitatively the same in the two fractions. On a protein basis the carotenoid content was about three times higher in the prolamellar body fraction than in the prothylakoid fraction. The CD spectra of the membrane fractions showed a CD couplet with a positive band at 655 nm, a zero crossing at 643–644 nm and a negative band at 623–636 nm. These results differ from earlier CD measurements on protochlorophyllide holochrome preparations. The results support the interpretation that protochlorophyllide is present as large aggregates in combination with NADPH and NADPH-protochlorophyllide oxidoreductase in the prolamellar bodies.  相似文献   

6.
The phototransformation of protochlorophyllide forms was studied in epicotyls of dark-germinated pea (Pisum sativum L. cv. Zsuzsi) seedlings. Middle segments were illuminated with white or 632.8 nm laser flash or continuous light at room temperature and at −15°C. At low light intensities, photoreduction could be distinguished from bleaching. 77 K fluorescence emission spectra were measured, difference spectra of illuminated and non-illuminated samples were calculated and/or the spectra were deconvoluted into Gaussian components. The 629 nm-emitting protochlorophyllide form, P629 (Pxxx where xxx is the fluorescence emission maximum), was inactive. For short-period (2–100 ms) and/or low-intensity (0.75–1.5 µmol m−2 s−1) illumination, particularly with laser light, the transformation of P636 into the 678 nm-emitting chlorophyllide form, C678 (Cxxx where xxx is the fluorescence emission maximum), was characteristic. This process was also found when the samples were cooled to −15°C. The transformation of P644 into C684 usually proceeded in parallel with the process above as a result of the strong overlap of the excitation bands of P636 and P644. The Shibata shift of C684 into a short-wavelength form, C675–676, was observed. Long-period (20–600 s) and/or high-intensity (above 10 µmol m−2 s−1) illumination resulted in the parallel transformation of P655 into C692. These results demonstrate that three flash-photoactive protochlorophyllide forms function in pea epicotyls. As a part of P636 is flash photoactive, its protochlorophyllide molecule must be bound to the active site of a monomer protein unit [Böddi B, Kis-Petik K, Kaposi AD, Fidy J, Sundqvist C (1998) The two short wavelength protochlorophyllide forms in pea epicotyls are both monomeric. Biochim Biophys Acta 1365: 531–540] of the NADPH:protochlorophyllide oxidoreductase (EC 1.3.1.33). Dynamic interconversions of the protochlorophyllide forms into each other, and their regeneration, were also found, which are summarized in a scheme.  相似文献   

7.
8.
The effects of nitrogen (N) deprivation were studied in etiolated pea plants (Pisum sativum cv. Zsuzsi) grown in shoot cultures. The average shoot lengths decreased and the stems significantly altered considering their pigment contents, 77 K fluorescence spectra and ultrastructural properties. The protochlorophyllide (Pchlide) content and the relative contribution of the 654–655 nm emitting flash‐photoactive Pchlide form significantly decreased. The etioplast inner membrane structure characteristically changed: N deprivation correlated with a decrease in the size and number of prolamellar bodies (PLBs). These results show that N deficiency directly hinders the pigment production, as well as the synthesis of other etioplast inner membrane components in etiolated pea stems.  相似文献   

9.
The relation between the different protochlorophyllide (PChlide) forms in isolated etioplast inner membranes was dependent on the concentration of sucrose and NADPH in the isolation media. Etioplasts were prepared from wheat ( Triticum aestivum L. cv. Starke II, Weibull) by differential centrifugation. The etioplasts were freed of envelope and stroma and the etioplast inner membranes were exposed to a concentration series of sucrose. Fluorescence emission spectra revealed a positive correlation between the emission ratio 657/633 nm and the sucrose concentration in which the membranes were suspended. Addition of NADPH prevented the degradation of 657 nm emission caused by low sucrose concentrations. PChlide already altered to PChide628–632 could not re-form PChlide650–657 after the addition of NADPH in darkness. Prolamellar bodies and prothylakoids were separated in a bottom-loaded sucrose density gradient in the presence of NADPH. The dominating PChlide-protein complex in the prolamellar bodies was PClide650–657. Only minor amounts of PChlide628–632 were found in these membranes. The prothylakoids had a higher content of PChlide628–632, relative to PChlide650–657, than the prolamellar bodies, as judged from absorption and fluorescence spectra. After phototransformation the fluorescence emission at 633 nm increased relative to the emission from phototransformed PChlide indicating an efficient energy transfer between PChlide628–632 and PChlide650–657 before irradiation.  相似文献   

10.
The effect of leaf developmental age on the protochlorophyllide (Pchlide) spectral forms and the expression of messenger RNA (mRNA) encoding NADPH‐protochlorophyllide oxidoreductase (POR) were investigated. Four plant species, maize, wheat, pea and the lip1 mutant of pea, known to have different composition of the spectral forms of Pchlide, were used. In very young plants short‐wavelength Pchlide with a fluorescence emission at 631 nm was dominating. Long‐wavelength Pchlide fluorescing mainly around 655 nm increased during development, which led to a relative decrease of the short‐wavelength forms. During ageing of the leaves, the short‐wavelength forms slightly increased again. The different proportions of short‐ and long‐wavelength Pchlide spectral forms were, however, found to vary with the developmental stage in a species specific pattern. The steady‐state level of POR mRNA and the amount of the POR protein were similar in species dominated by short‐wavelength forms and in species dominated with long‐wavelength forms. Even if POR is necessary for the formation of the long‐wavelength Pchlide form it is not the only limiting factor for formation of long‐wavelength Pchlide forms in mature plants.  相似文献   

11.
The last steps of chlorophyll (Chl) biosynthesis were studied at different light intensities and temperatures in dark‐germinated ginkgo (Ginkgo biloba L.) seedlings. Pigment contents and 77 K fluorescence emission spectra were measured and the plastid ultrastructure was analysed. All dark‐grown organs contained protochlorophyllide (Pchlide) forms with similar spectral properties to those of dark‐grown angiosperm seedlings, but the ratios of these forms to each other were different. The short‐wavelength, monomeric Pchlide forms were always dominating. Etioplasts with small prolamellar bodies (PLBs) and few prothylakoids (PTs) differentiated in the dark‐grown stems. Upon illumination with high light intensities (800 μmol m?2 s?1 photon flux density, PFD), photo‐oxidation and bleaching occurred in the stems and the presence of 1O2 was detected. When Chl accumulated in plants illuminated with 15 μmol m?2 s?1 PFD it was significantly slower at 10°C than at 20°C. At room temperature, the transformation of etioplasts into young chloroplasts was observed at low light, while it was delayed at 10°C. Grana did not appear in the plastids even after 48 h of greening at 20°C. Reaccumulation of Pchlide forms and re‐formation of PLBs occurred when etiolated samples were illuminated with 200 μmol m?2 s?1 PFD at room temperature for 24 h and were then re‐etiolated for 5 days. The Pchlide forms appeared during re‐etiolation had similar spectral properties to those of etiolated seedlings. These results show that ginkgo seedlings are very sensitive to temperature and light conditions during their greening, a fact that should be considered for ginkgo cultivation.  相似文献   

12.
Etiolated leaves of three different species, maize, wheat, and pea, as well as a pea mutant (lip1) were used to compare the excitation spectra of protochlorophyllide (Pchlide) in the red region. The species used have different composition of short-wavelength and long-wavelength Pchlide forms. The relation between different forms was furthermore changed through incubating the leaves in 5-aminolevulinic acid (ALA), which caused an accumulation of short-wavelength Pchlide forms, as shown by changes in absorption and fluorescence spectra. This is the first time a comprehensive comparison is made between excitation spectra from different species covering an emission wavelength range of 675–750 nm using fluorescence equipment with electronic compensation for the variations in excitation irradiance. The different forms of Pchlide having excitations peaks at 628, 632, 637, 650, and 672 nm could be best measured at 675, 700, 710, 725, and 750 nm, respectively. Measuring emission at wavelengths between 675– 710 nm gave an exaggeration of the short-wavelength forms and measuring at longer wavelengths gave for the pea leaves an exaggeration of the 672 nm peak. In general, an energy transfer from short-wavelength Pchlide forms to long-wavelength Pchlide forms occurred, but such an energy transfer sometimes seemed to be limited as a result of a discrete location of the Pchlide spectral forms. The excitation spectra resembling the absorption spectrum most were measured at an emission wavelength of 740 nm. Measuring the excitation at 710 nm gave higher intensity of the spectra but the short-wavelength forms were accentuated.  相似文献   

13.
Lenti  K.  Fodor  F.  Böddi  B. 《Photosynthetica》2002,40(1):145-151
The effect of Hg++ was studied on the arrangement and photoactivity of NADPH:protochlorophyllide oxidoreductase (POR) in homogenates of dark-grown wheat (Triticum aestivum L.) leaves. 77 K fluorescence emission spectra of the homogenates were recorded before and after the irradiation of the homogenates and the spectra were deconvoluted into Gaussian components. The mercury treatment caused a precipitation of the membrane particles, which was followed by a remarkable decrease of the fluorescence yield. 10-3 M Hg++ decreased the ratio of the 655 nm-emitting protochlorophyllide (Pchlide) form to the 633 nm-emitting form. 10-2 M Hg++ shifted the short wavelength band to 629–630 nm and a 655 nm form was observed which was inactive on irradiation. This inhibition may be caused by serious alteration of the enzyme structure resulting in the trans-localisation of NADPH within the active site of POR.  相似文献   

14.
Biosynthesis of chlorophyll is partly controlled by the phytochrome system. In order to study the effects of an activated phytochrome system on the protochlorophyllide (PChlide) biosynthesis without accompanying phototransformation to chlorophyll, wheat seedlings (Triticum aestivum L. cv. Starke II Weibull) were irradiated with long wavelength far-red light of low intensity. Absorption spectra were measured in vivo after different times in the far-red light or in darkness. The relationship between the different PChlide forms, the absorbance ratio 650nm636 nm changed with age in darkness, and the change was more pronounced when the leaves were grown in far-red light. Absorption spectra of dark-grown leaves always showed a maximum in the red region at 650 nm. For leaves grown in far-red light the absorption at 636 nm was high, with a maximum at the 5 day stage where it exceeded the absorption at 650 nm. At the same time there was a maximum in the total amount of PChlide accumulated in the leaves, about 30% more than in leaves grown in darkness. But the amount of the directly phototransformable PChlide, mainly PChlide650–657, was not increased. The amount of PChlide628–632, or more probably the amount of (PChlide628–632, + PChlide 636–657) was thus higher in young wheat leaves grown in far-red light than in those grown in darkness. After the 5 day stage the absorption at 636 nm relative to 650 nm decreased with age, and at the 8 day stage the spectra were almost the same in both types of leaves. Low temperature fluorescence spectra of the leaves also showed a change in the ratio between the different PChlide forms. The height of the fluorescence peak at 632 nm relative to the peak at 657 nm was higher in leaves grown in far-red light than in dark-grown leaves. – After exposure of the leaves to a light flash, the half time for the Shibata shift was measured. It increased with age both for leaves grown in darkness and in far-red light; but in older leaves grown in far-red light (7–8 days) the half time was slightly longer than in dark-grown leaves. – The chlorophyll accumulation in white light as well as the leaf unrolling were faster for leaves pre-irradiated with far-red light. The total length of the seedlings was equal or somewhat shorter in far-red light, but the length of the coleoptile was markedly reduced from 8.1 ± 0.1 cm for dark-grown seedlings to 5.2 ± 0.1 cm for seedlings grown in far-red light.  相似文献   

15.
At 77 K, under excitation at 440 nm, two major fluorescence emission peaks were observed in envelope membranes from spinach chloroplasts at 636 and 680 nm. A narrow range of wavelengths around 440 nm and a wider range of wavelengths between 390 and 440 nm, respectively, were responsible for excitation of the 636 and 680 nm fluorescence emissions which, in marked contrast with thylakoid fluorescence emission, were devoid of any exciting components between 460 and 500 nm. In acetonic extract of envelope membranes, two fluorescence emission peaks were observed at 635 and 675 nm. After extraction of the acetonic solution by nonpolar solvents (petroleum ether or hexane), the 675 nm fluorescence emission was partitioned between the polar and nonpolar phases whereas the 635 nm fluorescence emission was solely recovered in the polar phase. All together, the results obtained suggest that envelope membranes contain low amounts of pigments having the absorption and fluorescence spectroscopic properties, together with the behavior in polar/nonpolar solvents, of protochlorophyllide and chlorophyllide. In addition, modulation of the level of fluorescence at 636 and 680 nm could be obtained by addition of NADPH to envelope membranes under illumination. The presence of protochlorophyllide in chloroplast envelope membranes together with its possible photoconversion into chlorophyllide could have major implication for the understanding of chlorophyll biosynthesis in mature chloroplasts.  相似文献   

16.
Low-temperature fluorescence emission spectra of epicotyls of 6.5-day-old dark-grown seedlings of pea ( Pisum sativum L.) showed the dominance of short-wavelength protoch lorophyllide forms with emission maxima at 629 and 636 nm, respectively. The presence of long-wavelength protochlorophyllide with emission maxima around 650 nm was just detectable. Accordingly, irradiation with millisecond flashes gave a minute formation of chlorophyllide. The chlorophyll(ide) formation varied along the epicotyl. Irradiation with continuous light for 1.5 h resulted in an evident accumulation of chlorophyll(ide) in the upper part of the epicotyl. Only small amounts accumulated in the middle section. The conversion of protochlorophyllide to chlorophyllide was temperature dependent and almost arrested at 0°C. The chlorophyll(ide) formed had one dominating fluorescence peak at 681 nm. Irradiation for 24 h gave almost 100 times more chlorophyll in the upper part of the epicotyl than in the lower part. Electron micrographs from the upper part of the epicotyl irradiated for 6 h showed plastids with several developing thylakoids, while the plastids in the lower part of the epicotyl had only a few thylakoids. The dominance of short-wavelength protochlorophyllide forms indicated the presence of protochlorophyllide not bound to the active site of NADPH-protochlorophyllide oxidoreductase (EC 1.3.1.33). The inability of the short-wavelength form to transform into chlorophyllide with flash light denotes a dislocation from the active site. The time and temperature dependence of the chlorophyll(ide) formation in continuous light indicates that a relocation is required of the short-wavelength protochlorophyllide before chlorophyllide formation can occur.  相似文献   

17.
To study if etiolation symptoms exist in plants grown under natural illumination conditions, under‐soil epicotyl segments of light‐grown pea (Pisum sativum) plants were examined and compared to those of hydroponically dark‐grown plants. Light‐, fluorescence‐ and electron microscopy, 77 K fluorescence spectroscopy, pigment extraction and pigment content determination methods were used. Etioplasts with prolamellar bodies and/or prothylakoids, protochlorophyll (Pchl) and protochlorophyllide (Pchlide) forms (including the flash‐photoactive 655 nm emitting form) were found in the (pro)chlorenchyma of epicotyl segments under 3 cm soil depth; their spectral properties were similar to those of hydroponically grown seedlings. However, differences were found in etioplast sizes and Pchlide:Pchl molar ratios, which indicate differences in the developmental rates of the under‐soil and of hydroponically developed cells. Tissue regions closer to the soil surface showed gradual accumulation of chlorophyll, and in parallel, decrease of Pchl and Pchlide. These results proved that etioplasts and Pchlide exist in soil‐covered parts of seedlings even if they have a 3–4‐cm long photosynthetically active shoot above the soil surface. This underlines that etiolation symptoms do develop under natural growing conditions, so they are not merely artificial, laboratory phenomena. Consequently, dark‐grown laboratory plants are good models to study the early stages of etioplast differentiation and the Pchlide–chlorophyllide phototransformation.  相似文献   

18.
Low-temperature fluorescence emission spectra of 6.5-day-old dark-grown epicotyls of pea ( Pisum sativum ) revealed the presence of protochlorophyll(ide). The upper part of the epicotyl contained 30% of the protochlorophyll(ide) content per fresh weight found in pea leaves, whereas the lower part contained 3%. Three discrete spectral forms of protochlorophyll(ide) were clearly distinguished after Gaussian deconvolution of fluorescence excitation and emission spectra. Adding the satellite bands of the Qy(0-0) transitions (the emission vibrational (Emv) bands with correlated amplitudes, gave the following delineation: Ex439–Em629–Emv684, Ex447–Em636–Emv700 and Ex456–Em650–Emv728. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) followed by immunodetection of whole tissue extracts of the epicotyl indicated the presence of NADPH-protochlorophyllide oxidoreductase (EC 1.3.1.33). Electron micrographs showed prolamellar bodies in at most 11 % of the plastid profiles of the epicotyl cells. These prolamellar bodies were smaller, and many of them showed less regular structure than those of the leaves. Taken together, the results indicate that the protochlorophyll(ide) in epicotyls is arranged in a different way than in leaves.  相似文献   

19.
Cotyledons of conifers have a light-independent pathway for chlorophyll biosynthesis. To investigate whether the prolamellar body of Scots pine ( Pinus sylveslris L.) is similar to the better known prolamellar body of wheat, etioplast membrane fractions were isolated from cotyledons of dark-grown Scots pine. Dark-grown cotyledons contained both chlorophyll and protochlorophyllide, 158 and 10 nmol (g fresh weight)'respectively, and had a chlorophyll a to b ratio of 4.2. The content of glyco- and phospholipids was 7.1 μmol (g fresh weight)1. About 40 mol % of these lipids were the specific plastid lipids – monogalactosyl diacylglycerol. digalactosyl diacylglycerol and sulfoquinovosyl diacylglycerol in the relative amounts 50, 35 and 7 mol %. The mol ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol was 1.7. Low temperature fluorescence emission spectra of intact cotyledons and homogenate showed maxima at 633, 657, 686, 696 nm and a broad peak at 725–735 nm. The maxima at 633 and 657 nm represented different forms of protochlorophyllide and the other emission maxima represented chlorophyll protein complexes. The 657 nm form of protochlorophyllide was phototransformable both in vivo and in the isolated membranes. The phototransformable protochlorophyllide was substantially enriched in the prolamellar body fraction.
The specific activity of light dependent protochlorophyllide oxidoreductase in the prolamellar body fraction was found to be 2 nmol chlorophyllide formed [(mg protein)−1 min−1]. The molecular weight of the enzyme polypeptide was determined as 38 000 dalton with sodium dodecylsulphate-polyacrylamide gel electrophoresis.  相似文献   

20.
Primary leaves of 7-to-9 day-old etiolated bean seedlings contain a species of protochlorophyllide which is not transformed to chlorophyllide by light; this pigment species exhibits an absorption peak at 631nm invivo at ?196° and a fluorescence emission peak at 639nm invivo at room temperature. Heat-treatment of etiolated leaves converts the phototransformable protochlorophyllide holochrome to a pigment species with invivo absorption and fluorescence peaks identical to those of endogenous nontransformable protochlorophyllide. Administration of δ-amino-levulinic acid to etiolated leaves causes the synthesis of non-transformable protochlorophyllide with an absorption peak also at 631nm invivo at ?196° but with a fluorescence emission peak at 643nm invivo at room temperature. Heat-treatment of such leaves does not affect the position of these bands. The results indicate that protochlorophyllide which is derived from exogenous δ-amino-levulinic acid is in a physically different state from other forms of protochlorophyllide in the leaf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号