首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tumor radiotherapy with large-field irradiation results in an increase in apoptosis of the radiosensitive hematopoietic stem cells (CD34(+)). The aim of this study was to demonstrate the radioprotective potential of MDR1 overexpression in human CD34(+) cells using a lentiviral self-inactivating vector. Transduced human undifferentiated CD34(+) cells were irradiated with 0-8 Gy and held in liquid culture under myeloid-specific maturation conditions. After 12 days, MDR1 expression was determined by the rhodamine efflux assay. The proportion of MDR1-positive cells in cells from four human donors increased with increasing radiation dose (up to a 14-fold increase at 8 Gy). Determination of expression of myeloid-specific surface marker proteins revealed that myeloid differentiation was not affected by transduction and MDR1 overexpression. Irradiation after myeloid differentiation also led to an increase of MDR1-positive cells with escalating radiation doses (e.g. 12.5-16% from 0-8 Gy). Most importantly, fractionated irradiation (3 x 2 Gy; 24-h intervals) of MDR1-transduced CD34(+) cells resulted in an increase in MDR1-positive cells (e.g. 3-8% from 0-3 x 2 Gy). Our results clearly support a radioprotective effect of lentiviral MDR1 overexpression in human CD34(+) cells. Thus enhancing repopulation by surviving stem cells may increase the radiation tolerance of the hematopoietic system, which will contribute to widening the therapeutic index in radiotherapy.  相似文献   

2.
3.
The aim of this study was to determine molecular mechanism(s) responsible for the reduced thymidine kinase activity (TK) observed earlier in an arabinosylcytosine (araC) resistant lymphoid cell line (H9-araC cells), which was obtained following continuous cultivation of H9 cells in the presence of 0.5 microM araC. Compared to H9 cells, in H9-araC cells TK1 and TK2 gene expressions were reduced to 17.7% and 2.5%, respectively, and the cellular AZT accumulation was diminished to 35.8%. These cells were also found cross-resistant to azidothymidine (>42-fold). There was no significant difference in the expression of MDR1, MRP4 or TK protein. The lack of correlation between the expressions of TK protein and TK1 and TK2 suggests that post-translational factors may also play a role in the reduced TK activity in H9-araC cells. These findings suggest that araC affects TK expression at the genetic level.  相似文献   

4.
True gamma or gamma 2 genes, unlike alpha, beta, and gamma 1 (beta gamma) genes of herpes simplex virus 1 (HSV-1), stringently require viral DNA synthesis for their expression. We report that gamma 2 genes resident in cells were induced in trans by infection with HSV-1 but that the induction did not require amplification of either the resident gene or the infecting viral genome. Specifically, to test the hypothesis that expression of these genes is amplification dependent, we constructed two sets of gamma 2-thymidine kinase (TK) chimeric genes. The first (pRB3038) consisted of the promoter-regulatory region and a portion of 5'-transcribed noncoding region of the domain of a gamma 2 gene identified by Hall et al. (J. Virol. 43:594-607) in the HSV-1(F) BamHI fragment D' to the 5'-transcribed noncoding and coding regions of the TK gene. The second (pRB3048) contained, in addition, an origin of HSV-1 DNA replication. Cells transfected with either the first or second construct and selected for the TK+ phenotype were then tested for TK induction after superinfection with HSV-1(F) delta 305, containing a deletion in the coding sequences of the TK gene, and viruses containing, in addition, a ts lesion in the alpha 4 regulatory protein (ts502 delta 305) or in the beta 8 major DNA-binding protein (tsHA1 delta 305). The results were as follows: induction by infection with TK- virus of chimeric TK genes with or without an origin of DNA replication was dependent on functional alpha 4 protein but not on viral DNA synthesis; the resident chimeric gene in cells selected for G418 (neomycin) resistance was regulated in the same fashion; the chimeric gene recombined into the viral DNA was regulated as a gamma 2 gene in that its expression in infected cells was dependent on viral DNA synthesis; the gamma 2-chimeric genes resident in the host and in viral genomes were transcribed from the donor BamHI fragment D' containing the promoter-regulatory domain of the gamma 2 gene. The significance of the differential regulation of gamma 2 genes in the environments of host and viral genomes by viral trans-acting factors is discussed.  相似文献   

5.
由MDR1基因过度表达所引起的肿瘤细胞对化疗药物的耐药性,是导致化疗失败的主要原因之一.针对MDR1中一段包含转录启始位点、翻译启始位点和转录正调控区的序列,设计了反义RNA并将其克隆到逆转录病毒载体pLXSN上.用脂质体包裹载体导入MDR1高表达的耐药细胞KBv200中,在反义RNA转染的细胞中,MDR1在mRNA和蛋白水平的表达都有下降,细胞内药物的浓度有所提高,对长春新碱、阿霉素的耐药性分别下降了65%和47%.实验结果表明,反义RNA对MDR1的表达有抑制作用,从而使肿瘤细胞内的药物浓度升高,其耐药程度下降.  相似文献   

6.
This work aimed to study a novel transgenic expression system of the CD/TK double suicide genes enhanced by the nuclear matrix attachment region (MAR) for gene therapy. The recombinant vector pMS-CD/TK containing the MAR–survivin promoter–CD/TK cassette was developed and transfected into human gastric cancer SGC-7901 cells. Expression of the CD/TK genes was detected by quantitative real-time PCR (qPCR) and Western blot. Cell viability and apoptosis were measured using the methyl thiazolyl tetrazolium (MTT) assay and flow cytometry. When the MAR fragment was inserted into the upstream of the survivin promoter, the qPCR result showed that the expression of the CD/TK genes significantly increased 7.7-fold in the transgenic SGC-7901 cells with plasmid pMS-CD/TK compared with that without MAR. MTT and flow cytometry analyses indicated that treatment with the prodrugs (5-FC + GCV) significantly decreased the cellular survival rate and enhanced the cellular apoptosis in the SGC-7901 cells. The expression of the CD/TK double suicide genes driven by the survivin promoter can be enhanced by the MAR fragment in human gastric cancer cells.  相似文献   

7.
8.
Gene therapy using anticancer drug-resistance genes   总被引:1,自引:0,他引:1  
Sugimoto Y 《Human cell》1999,12(3):115-123
Myelosuppression is a major dose-limiting factor in cancer chemotherapy. Introduction of drug-resistance genes into bone marrow cells of cancer patients has been proposed to overcome this limitation. In theory, any gene whose expression protects cells against the toxic effects of chemotherapy should be useful in vivo for this purpose. Among such genes, human multidrug-resistance gene (MDR1) has been studied most extensively for this purpose, and clinical trials of drug-resistance gene therapy have been started in the US for cancer patients who undergo high-dose chemotherapy with autologous hematopoietic stem cell transplantation. In Japan, our clinical protocol of MDR1 gene therapy "A clinical study of drug-resistance gene therapy to improve the efficacy and safety of chemotherapy against breast cancer" has been submitted to the government. To improve the efficacy and safety of this drug-resistance gene therapy, we have constructed a series of MDR1-bicistronic retrovirus vectors using a retrovirus backbone of Harvey murine sarcoma virus and internal ribosome entry site (IRES) from picornavirus to co-express a second gene with the MDR1 gene. MDR1-MGMT bicistronic vectors can be used to protect bone marrow cells of cancer patients from combination chemotherapy with MDR1-related anticancer agents and nitrosoureas. In addition, MDR1-bicistronic retrovirus vectors can be designed to use the MDR1 gene as an in vivo selectable marker to enrich the transduced cells which express therapeutic genes, if disease is curable by the expression of a single-peptide gene in any types of bone marrow cells or peripheral blood cells.  相似文献   

9.
MDR has been studied extensively in mammalian cell lines. According to usual practice, the MDR phenotype is characterized by the following features: cross resistance to multiple chemotherapeutic agents (lipophilic cations), defective intracellular drug accumulation and retention, overexpression of P-gp (often accompanied by gene amplification), and reversal of the phenotype by addition of calcium channel blockers. An hypothesis for the function of P-gp has been proposed in which P-gp acts as a carrier protein that actively extrudes MDR compounds out of the cells. However, basic questions, such as what defines the specificity of the pump and how is energy for active efflux transduced, remain to be answered. Furthermore, assuming that P-gp acts as a drug transporter, one will expect a relationship between P-gp expression and accumulation defects in MDR cell lines. A review of papers reporting 97 cell lines selected for resistance to the classical MDR compounds has revealed that a connection exists in most of the reported cell lines. However, several exceptions can be pointed out. Furthermore, only a limited number of well characterized series of sublines with different degrees of resistance to a single agent have been reported. In many of these, a correlation between P-gp expression and transport properties can not be established. Co-amplification of genes adjacent to the mdr1 gene, mutations [122], splicing of mdr1 RNA [123], modulation of P-gp by phosphorylation [124] or glycosylation [127], or experimental conditions [26,78] could account for some of the complexity of the phenotype and the absence of correlation in some of the cell lines. However, both cell lines with overexpression of P-gp without increased efflux [i.e., 67,75] and cell lines without P-gp expression and accumulation defects/increased efflux [i.e., 25,107] have been reported. Thus, current results from MDR cell lines contradict--but do not exclude--that P-gp acts as multidrug transporter. Other models for the mechanism of resistance have been proposed: (1) An energy-dependent permeability barrier working with greater efficacy in resistant cells. This hypothesis is supported by studies of influx which, although few, all except one demonstrate decreased influx in resistant cells; (2) Resistant cells have a greater endosomal volume, and a greater exocytotic activity accounts for the efflux.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
11.
The genetic basis of fluconazole resistance development in Candida albicans   总被引:13,自引:0,他引:13  
Infections by the opportunistic fungal pathogen Candida albicans are widely treated with the antifungal agent fluconazole that inhibits the biosynthesis of ergosterol, the major sterol in the fungal plasma membrane. The emergence of fluconazole-resistant C. albicans strains is a significant problem after long-term treatment of recurrent oropharyngeal candidiasis (OPC) in acquired immunodeficiency syndrome (AIDS) patients. Resistance can be caused by alterations in sterol biosynthesis, by mutations in the drug target enzyme, sterol 14alpha-demethylase (14DM), which lower its affinity for fluconazole, by increased expression of the ERG11 gene encoding 14DM, or by overexpression of genes coding for membrane transport proteins of the ABC transporter (CDR1/CDR2) or the major facilitator (MDR1) superfamilies. Different mechanisms are frequently combined to result in a stepwise development of fluconazole resistance over time. The MDR1 gene is not or barely transcribed during growth in vitro in fluconazole-susceptible C. albicans strains, but overexpressed in many fluconazole-resistant clinical isolates, resulting in reduced intracellular fluconazole accumulation. The activation of the gene in resistant isolates is caused by mutations in as yet unknown trans-regulatory factors, and the resulting constitutive high level of MDR1 expression causes resistance to other toxic compounds in addition to fluconazole. Disruption of both alleles of the MDR1 gene in resistant C. albicans isolates abolishes their resistance to these drugs, providing genetic evidence that MDR1 mediates multidrug resistance in C. albicans.  相似文献   

12.
13.
BACKGROUND: The objective of multidrug resistance-1 (MDR1) gene therapy is protection of the myeloid cell lineage. It is therefore important to examine the effect of retroviral transduction on myeloid maturation. Transfer of the human MDR1 gene can confer resistance to a variety of cytostatic drugs. For a safe application in humans it is paramount to follow-up the development of transduced cells. METHODS: We transduced human mobilized peripheral blood progenitor cells (PBPC) with a viral vector containing the human MDR1 cDNA and transplanted the transduced cells into non-obese diabetic severe combined immunodeficient (NOD/SCID) mice. The progeny of the transduced cells was analyzed in detail by flow cytometry. RESULTS: A detailed analysis by four-color flow cytometry showed that MDR1 transgene-expressing CD33+ myeloid cells were preferentially negative for the maturation-associated myeloid markers CD11b and CD10, while the untransduced CD33+ myeloid cells expressed significantly higher proportions of these Ag (P<0.01 each). There was no difference in the expression of B- or T-lymphoid Ag among the MDR1-transduced and untransduced lymphoid cells. DISCUSSION: These data indicate that retroviral MDR1 gene transfer results in preferential P-glycoprotein expression in myeloid progenitor cells, which is the target cell population for myelotoxicity of cytostatic drugs.  相似文献   

14.
mdr-1和bcl-2基因在K562/ADM多药耐药细胞中的共表达   总被引:1,自引:0,他引:1  
为探讨肿瘤细胞多药耐药(MDR)形成的分子机理,本文观察了mdr-1、bcl-2和bax基因及其编码蛋白在人红白血病细胞株K562/ADM中的可能共表达。结果显示,在K562/ADM细胞中,在以mdr-1及P-gp过度表达为 特征的MDR形成时,其bcl-2及产物Bcl-2也过度表达,其中Bcl-2的表达阳性率约为相应敏感株K562的11倍;而Bax在二种细胞中均呈阳性表达,但无显著差异(P>0.05),提示bcl-2基因在mRNA和蛋白水平上的过度表达可能是K562/ADM细胞MDR形成时细胞凋亡耐受的分子基础。  相似文献   

15.
Gene therapy-mediated overexpression of superoxide dismutases (SOD) appears to be a promising strategy for modulating radiosensitivity based on detoxification of superoxide radicals and suppression of apoptosis. Using recombinant lentiviral-based vectors, the effects of SOD overexpression on both were tested in human lymphoblastoid cells (TK6) that are sensitive to radiation-induced apoptosis. TK6 cells were transduced with vectors containing CuZnSOD, MnSOD or inverted MnSOD (MSODi) cDNA. Gene transfer efficiency, SOD activity, superoxide-radical resistance, apoptosis and clonogenic survival were determined. A six- to eightfold increase in SOD activity was observed after transduction, rendering MnSOD-overexpressing TK6 cells significantly more resistant to paraquat-induced superoxide radical production than controls. Although significant differences in sensitivity to apoptosis were observed for MnSOD, no differences in clonogenic survival after irradiation were detected between any groups. Our data show that efficient cellular SOD overexpression, an increased superoxide radical detoxifying ability and, for MnSOD, decreased apoptosis did not result in increased clonogenic survival after irradiation. This strengthens the hypothesis of differences in the radiation-modulating effects of SOD on normal and malignant cells (protective and nonprotective, respectively), thereby showing its potential to increase the therapeutic index in future clinical SOD-based radioprotection approaches.  相似文献   

16.
17.
The multidrug transporter, initially identified as a multidrug efflux pump responsible for resistance of cultured cells to natural product cytotoxic drugs, is normally expressed on the apical membranes of excretory epithelial cells in the liver, kidney, and intestine. This localization suggests that the multidrug transporter may have a normal physiological role in transporting cytotoxic compounds or metabolites. In the liver, hepatectomy or treatment with chemical carcinogens increases expression of the MDR1 gene which encodes the multidrug transporter. To evaluate conditions which increase MDR1 gene expression, we have investigated the induction of the MDR1 gene by physical and chemical environmental insults in the renal adenocarcinoma cell line HTB-46. There are two strong heat shock consensus elements in the major MDR1 gene promoter. Exposure of HTB-46 cells to heat shock, sodium arsenite, or cadmium chloride led to a 7- to 8-fold increase in MDR1 mRNA levels. MDR1 RNA levels did not change following glucose starvation or treatment with 2-deoxyglucose and the calcium ionophore A23187, conditions which are known to activate the expression of another family of stress proteins, the glucose-regulated proteins. The levels of the multidrug transporter, P-glycoprotein, as measured by immunoprecipitation, were also increased after heat shock and sodium arsenite treatment. This increase in the level of the multidrug transporter in HTB-46 cells correlated with a transient increase in resistance to vinblastine following heat shock and arsenite treatment. These results suggest that the MDR1 gene is regulatable by environmental stress.  相似文献   

18.
19.
High glucosylceramide synthase (GCS) activity is one factor contributing to multidrug resistance (MDR) in breast cancer. Enforced GCS overexpression has been shown to disrupt ceramide-induced apoptosis and to confer resistance to doxorubicin. To examine whether GCS is a target for cancer therapy, we have designed and tested the effects of antisense oligodeoxyribonucleotides (ODNs) to GCS on gene expression and chemosensitivity in multidrug-resistant cancer cells. Here, we demonstrate that antisense GCS (asGCS) ODN-7 blocked cellular GCS expression and selectively increased the cytotoxicity of anticancer agents. Pretreatment with asGCS ODN-7 increased doxorubicin sensitivity by 17-fold in MCF-7-AdrR (doxorubicin-resistant) breast cancer cells and by 10-fold in A2780-AD (doxorubicin-resistant) ovarian cancer cells. In MCF-7 drug-sensitive breast cancer cells, asGCS ODN-7 only increased doxorubicin sensitivity by 3-fold, and it did not influence doxorubicin cytotoxicity in normal human mammary epithelial cells. asGCS ODN-7 was shown to be more efficient in reversing drug resistance than either the GCS chemical inhibitor d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol or the P-glycoprotein blocking agents verapamil and cyclosporin A. Experiments defining drug transport and lipid metabolism parameters showed that asGCS ODN-7 overcomes drug resistance mainly by enhancing drug uptake and ceramide-induced apoptosis. This study demonstrates that a 20-mer asGCS oligonucleotide effectively reverses MDR in human cancer cells.  相似文献   

20.
In an attempt to identify novel proteins involved in the emergence of multidrug resistance (MDR) in leukemia cells, we adopted a proteomics approach to analyze protein expression patterns in leukemia cell lines, K562, and its MDR counterpart, K562/A02. Combining high-resolution two-dimensional gel electrophoresis and mass spectrometry, we compared the protein expression profiles between K562 and K562/A02. A total number of 22 protein spots with altered abundances of more than 2-fold were detected and 14 proteins were successfully identified. Consistent with our previous observations by cDNA microarray, sorcin, a 22-kDa calcium-binding protein, was also identified by this proteomic approach with a 10.4-fold up-regulation in K562/A02 cells. Overexpression of sorcin protein in K562 cells by gene transfection led to significantly reduced cytosolic calcium level and increased resistance to cell apoptosis. Further, leukemia cell lines over-expressing sorcin also showed up-regulation of Bcl-2, along with decreased level of Bax. Taken together, our results suggest that sorcin plays an important role in the emergence of MDR in leukemia cells via regulating cell apoptosis pathways, thus may represent both a new MDR marker for prognosis and a good target for anti-MDR drug development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号