首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Although human group VIB calcium-independent phospholipase A(2) (iPLA(2)gamma) contains the lipase-consensus sequence Gly-Xaa-Ser-Xaa-Gly in the C-terminal half, its overall sequence exhibits a week similarity to those of other PLA(2)s, and thus no information on the catalytic site has been available. Here we show that the C-terminal region of human iPLA(2)gamma is responsible for the enzymatic activity. Comparison of this catalytic domain with those of the mouse homologue, human cytosolic PLA(2) (cPLA(2)), and the plant PLA(2) patatin reveals that an amino acid sequence of a short segment around Asp-627 of iPLA(2)gamma is conserved among these PLA(2)s, in addition to the Ser-483-containing lipase motif; the corresponding serine and aspartate in cPLA(2) and patatin are known to form a catalytic dyad. Since substitution of alanine for either Ser-483 or Asp-627 results in a loss of the PLA(2) activity, we propose that Ser-483 and Asp-627 of human iPLA(2)gamma constitute an active site similar to the Ser-Asp dyad in cPLA(2) and patatin.  相似文献   

2.
Several studies indicate that phospholipase A(2) (PLA(2)) expression and/or activation account for the high levels of arachidonic acid (AA) detected in cancer and, together with the elevated expression of cyclooxygenase-2, lead to cell proliferation and tumor formation. Using Caco-2 cells, a human colorectal carcinoma cell, we studied the role of high-molecular-weight PLA(2)s, cytosolic PLA(2) (cPLA(2)), and calcium-independent PLA(2) (iPLA(2)) in the AA cascade and in cell growth. Treatment with an antisense oligonucleotide against cPLA(2)alpha decreased [(3)H]AA release induced by ionophore A23187 or by a phorbol ester but did not affect the release of [(3)H]AA, [(3)H]thymidine incorporation, or Caco-2 growth induced by fetal calf serum (FCS). However, these parameters were significantly modified by iPLA(2) inhibitors and by an antisense oligonucleotide against iPLA(2)beta. Our results show that iPLA(2) was involved in AA release and the subsequent prostaglandin production induced by serum. Moreover, these data indicate that iPLA(2) may be involved in the signaling pathways involved in the control of Caco-2 proliferation.  相似文献   

3.
We have investigated the possible involvement of two intracellular phospholipases A(2), namely group VIA calcium-independent phospholipase A(2) (iPLA(2)-VIA) and group IVA cytosolic phospholipase A(2) (cPLA(2)alpha), in the regulation of human promonocytic U937 cell proliferation. Inhibition of iPLA(2)-VIA activity by either pharmacological inhibitors such as bromoenol lactone or methyl arachidonyl fluorophosphonate or using specific antisense technology strongly blunted U937 cell proliferation. In contrast, inhibition of cPLA(2)alpha had no significant effect on U937 proliferation. Evaluation of iPLA(2)-VIA activity in cell cycle-synchronized cells revealed highest activity at G(2)/M and late S phases, and lowest at G(1). Phosphatidylcholine levels showed the opposite trend, peaking at G(1) and lowest at G(2)/M and late S phase. Reduction of U937 cell proliferation by inhibition of iPLA(2)-VIA activity was associated with arrest in G(2)/M and S phases. The iPLA(2)-VIA effects were found to be independent of the generation of free arachidonic acid or one of its oxygenated metabolites, and may work through regulation of the cellular level of phosphatidylcholine, a structural lipid that is required for cell growth/membrane expansion.  相似文献   

4.
The mammalian Golgi complex, trans Golgi network (TGN) and ER-Golgi intermediate compartment (ERGIC) are comprised of membrane cisternae, coated vesicles and membrane tubules, all of which contribute to membrane trafficking and maintenance of their unique architectures. Recently, a new cast of players was discovered to regulate the Golgi and ERGIC: four unrelated cytoplasmic phospholipase A (PLA) enzymes, cPLA(2)α (GIVA cPLA(2)), PAFAH Ib (GVIII PLA(2)), iPLA(2)-β (GVIA-2 iPLA(2)) and iPLA(1)γ. These ubiquitously expressed enzymes regulate membrane trafficking from specific Golgi subcompartments, although there is evidence for some functional redundancy between PAFAH Ib and cPLA(2)α. Three of these enzymes, PAFAH Ib, cPLA(2)α and iPLA(2)-β, exert effects on Golgi structure and function by inducing the formation of membrane tubules. We review our current understanding of how PLA enzymes regulate Golgi and ERGIC morphology and function.  相似文献   

5.
P388D(1) cells exposed to bacterial lipopolysaccharide (LPS) mobilize arachidonic acid (AA) for prostaglandin synthesis in two temporally distinct pathways. The "immediate pathway" is triggered within minutes by receptor agonists such as platelet-activating factor (PAF) but only if the cells have previously been primed with LPS for 1 h. The "delayed pathway" occurs in response to LPS alone over the course of several hours. We have now investigated the subcellular localization of both the Group IV cytosolic phospholipase A(2) (cPLA(2)) and the Group V secreted PLA(2) (sPLA(2)) during these two temporally distinct routes of AA release. We have prepared cells overexpressing fusion proteins of sPLA(2)-GFP and cPLA(2)-RFP. In the resting cells, cPLA(2)-RFP was uniformly located throughout the cytoplasm, and short-term treatment with LPS did not induce translocation to perinuclear and/or Golgi membranes. However, such a translocation occurred almost immediately after the addition of PAF to the cells. Long-term exposure of the cells to LPS led to the translocation of cPLA(2)-RFP to intracellular membranes after 3 h, and correlates with a significant release of AA in a cPLA(2)-dependent manner. At the same time period that the delayed association of cPLA(2) with perinuclear membranes is detected, an intense fluorescence arising from the sPLA(2)-GFP was found around the nucleus in the sPLA(2)-GFP stably transfected cells. In parallel with these changes, significant AA release was detected from the sPLA(2)-GFP transfectants in a cPLA(2)-dependent manner, which may reflect cross-talk between sPLA(2) and cPLA(2). The subcellular localization of the Group VIA Ca(2+)-independent PLA(2) (iPLA(2)) was also investigated. Cells overexpressing iPLA(2)-GFP showed no fluorescence changes under any activation condition. However, the iPLA(2)-GFP-expressing cells showed relatively high basal AA release, confirming a role for iPLA(2) in basal deacylation reactions. These new data illustrate the subcellular localization changes that accompany the distinct roles that each of the three kinds of PLA(2) present in P388D(1) macrophages play in AA mobilization.  相似文献   

6.
Both elevated iron concentrations and the resulting oxidative stress condition are common signs in retinas of patients with age-related macular degeneration (AMD). The role of phospholipase A(2) (PLA(2)) during iron-induced retinal toxicity was investigated. To this end, isolated retinas were exposed to increasing Fe(2+) concentrations (25, 200 or 800μM) or to the vehicle, and lipid peroxidation levels, mitochondrial function, and the activities of cytosolic PLA(2) (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)) were studied. Incubation with Fe(2+) led to a time- and concentration-dependent increase in retinal lipid peroxidation levels whereas retinal cell viability was only affected after 60min of oxidative injury. A differential release of arachidonic acid (AA) and palmitic acid (PAL) catalyzed by cPLA(2) and iPLA(2) activities, respectively, was also observed in microsomal and cytosolic fractions obtained from retinas incubated with iron. AA release diminished as the association of cyclooxigenase-2 increased in microsomes from retinas exposed to iron. Retinal lipid peroxidation and cell viability were also analyzed in the presence of cPLA(2) inhibitor, arachidonoyl trifluoromethyl ketone (ATK), and in the presence of iPLA(2) inhibitor, bromoenol lactone (BEL). ATK decreased lipid peroxidation levels and also ERK1/2 activation without affecting cell viability. BEL showed the opposite effect on lipid peroxidation. Our results demonstrate that iPLA(2) and cPLA(2) are differentially regulated and that they selectively participate in retinal signaling in an experimental model resembling AMD.  相似文献   

7.
We provide novel evidence that human melanoma cell lines (M10, M14, SK-MEL28, SK-MEL93, 243MEL, 1074MEL, OCM-1, and COLO38) expressed, at mRNA and protein levels, either Ca(2+)-independent phospholipase A(2) (iPLA(2)) or cytosolic phospholipase A(2) (cPLA(2)) and its phosphorylated form. Normal human melanocytes contained the lowest levels of both PLA(2)s. Cyclooxygenase-1 and -2 (COX-1 and COX-2) were also expressed in cultured tumor cells as measured by Western blots. The most pronounced overexpression of iPLA(2) and COX-1 was found in two melanoma-derived cells, M14 and COLO38. Normal human melanocytes and the M10 melanoma cell line displayed no COX-2 expression. Using subcellular fractionation, Western blot and confocal microcopy analyses, in paradigmatic SK-MEL28 and SK-MEL93 cells we showed that iPLA(2), COX-1 and even cPLA(2) were equally located in the cytosol, membrane structures and perinuclear region while COX-2 was preferentially associated with the cytosol. Specific inhibitors of these three enzymes significantly reduced the basal proliferation rate either in melanocytes or in melanoma cell lines. These results, coupled with the inhibition of the cell proliferation by electroporation of melanoma cells with cPLA(2) or COX-2 antibodies, demonstrate that a possible correlation between PLA(2)-COX expression and tumor cell proliferation in the melanocytic system does exist. In addition, the high expression level of both PLA(2)s and COXs suggests that eicosanoids modulate cell proliferation and tumor invasiveness.  相似文献   

8.
Monocyte chemoattractant protein 1 (MCP-1) has an important influence on monocyte migration into sites of inflammation. Our understanding of the signal transduction pathways involved in the response of monocytes to MCP-1 is quite limited yet potentially significant for understanding and manipulating the inflammatory response. Prior studies have demonstrated a crucial regulatory role for cytosolic phospholipase A(2) (cPLA(2)) in monocyte chemotaxis to MCP-1. In these studies we investigated the role for another PLA(2), calcium-independent PLA(2) (iPLA(2)) in comparison to cPLA(2). Pharmacological inhibitors of PLA(2) were found to substantially inhibit chemotaxis. Using antisense oligodeoxyribonucleotide treatment we found that iPLA(2) expression is required for monocyte migration to MCP-1. Complete blocking of the chemotactic response was observed with inhibition of either iPLA(2) or cPLA(2) expression by their respective antisense oligodeoxyribonucleotide. In reconstitution experiments, lysophosphatidic acid completely restored MCP-1-stimulated migration in iPLA(2)-deficient monocytes, whereas lysophosphatidic acid was without effect in restoring migration in cPLA(2)-deficient monocytes. To the contrary, arachidonic acid fully restored migration of cPLA(2)-deficient monocytes while having no effect on the iPLA(2)-deficient monocytes. Additional studies revealed that neither enzyme appears to be upstream of the other indicating that iPLA(2) and cPLA(2) represent parallel regulatory pathways. These data demonstrate novel and distinct roles for these two phospholipases in this critical step in inflammation.  相似文献   

9.
10.
Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) is a prototypic sPLA(2) enzyme that may play roles in modification of eicosanoid biosynthesis as well as antibacterial defense. In several cell types, inducible expression of sPLA(2) by pro-inflammatory stimuli is attenuated by group IVA cytosolic PLA(2) (cPLA(2)alpha) inhibitors such as arachidonyl trifluoromethyl ketone, leading to the proposal that prior activation of cPLA(2)alpha is required for de novo induction of sPLA(2). However, because of the broad specificity of several cPLA(2)alpha inhibitors used so far, a more comprehensive approach is needed to evaluate the relevance of this ambiguous pathway. Here, we provide evidence that the induction of sPLA(2)-IIA by pro-inflammatory stimuli requires group VIB calcium-independent PLA(2) (iPLA(2)gamma), rather than cPLA(2)alpha, in rat fibroblastic 3Y1 cells. Results with small interfering RNA unexpectedly showed that the cytokine induction of sPLA(2)-IIA in cPLA(2)alpha knockdown cells, in which cPLA(2)alpha protein was undetectable, was similar to that in replicate control cells. By contrast, knockdown of iPLA(2)gamma, another arachidonyl trifluoromethyl ketone-sensitive intracellular PLA(2), markedly reduced the cytokine-induced expression of sPLA(2)-IIA. Supporting this finding, the R-enantiomer of bromoenol lactone, an iPLA(2)gamma inhibitor, suppressed the cytokine-induced sPLA(2)-IIA expression, whereas (S)-bromoenol lactone, an iPLA(2)beta inhibitor, failed to do so. Moreover, lipopolysaccharide-stimulated sPLA(2)-IIA expression was also abolished by knockdown of iPLA(2)gamma. These findings open new insight into a novel regulatory role of iPLA(2)gamma in stimulus-coupled sPLA(2)-IIA expression.  相似文献   

11.
Little is known about the regulatory mechanisms of endothelial cell (EC) proliferation by retinal pericytes and vice versa. In a model of coculture with bovine retinal pericytes lasting for 24 h, rat brain ECs showed an increase in arachidonic acid (AA) release, whereas Western blot and RT-PCR analyses revealed that ECs activated the protein expression of cytosolic phospholipase A(2) (cPLA(2)) and its phosphorylated form and calcium-independent intracellular phospholipase A(2) (iPLA(2)). No activation of the same enzymes was seen in companion pericytes. In ECs, the protein level of phosphorylated extracellular signal-regulated kinase (ERK) 1/2 was also enhanced significantly, a finding not observed in cocultured pericytes. The expression of protein kinase C-alpha (PKCalpha) and its phosphorylated form was also enhanced in ECs. Wortmannin, LY294002, and PD98059, used as inhibitors of upstream kinases (the PI3-kinase/Akt/PDK1 or MEK-1 pathway) in cultures, markedly attenuated AA release and the expression of phosphorylated forms of endothelial cPLA(2), PKCalpha, and ERK1/2. By confocal microscopy, activation of PKCalpha in perinuclear regions of ECs grown in coculture as well as strong activation of cPLA(2) in ECs taken from a model of mixed culture were clearly observed. However, no increased expression of both enzymes was found in cocultured pericytes. Our findings indicate that a sequential activation of PKCalpha contributes to endothelial ERK1/2 and cPLA(2) phosphorylation induced by either soluble factors or direct cell-to-cell contact, and that the PKCalpha-cPLA(2) pathway appears to play a key role in the early phase of EC-pericyte interactions regulating blood retina or blood-brain barrier maturation.  相似文献   

12.
13.
Cytosolic phospholipase A(2)alpha (cPLA(2)alpha; type IVA), an essential initiator of stimulus-dependent arachidonic acid (AA) metabolism, underwent caspase-mediated cleavage at Asp(522) during apoptosis. Although the resultant catalytically inactive N-terminal fragment, cPLA(2)(1-522), was inessential for cell growth and the apoptotic process, it was constitutively associated with cellular membranes and attenuated both the A23187-elicited immediate and the interleukin-1-dependent delayed phases of AA release by several phospholipase A(2)s (PLA(2)s) involved in eicosanoid generation, without affecting spontaneous AA release by PLA(2)s implicated in phospholipid remodeling. Confocal microscopic analysis revealed that cPLA(2)(1-522) was distributed in the nucleus. Pharmacological and transfection studies revealed that Ca(2+)-independent PLA(2) (iPLA(2); type VI), a phospholipid remodeling PLA(2), contributes to the cell death-associated increase in fatty acid release. iPLA(2) was cleaved at Asp(183) by caspase-3 to a truncated enzyme lacking most of the first ankyrin repeat, and this cleavage resulted in increased iPLA(2) functions. iPLA(2) had a significant influence on cell growth or death, according to cell type. Collectively, the caspase-truncated form of cPLA(2)alpha behaves like a naturally occurring dominant-negative molecule for stimulus-induced AA release, rendering apoptotic cells no longer able to produce lipid mediators, whereas the caspase-truncated form of iPLA(2) accelerates phospholipid turnover that may lead to apoptotic membranous changes.  相似文献   

14.
We examined brain phospholipase A2 (PLA2) activity and the expression of enzymes metabolizing arachidonic acid (AA) in cytosolic PLA2 knockout () mice to see if other brain PLA2 can compensate for the absence of cPLA2 alpha and if cPLA2 couples with specific downstream enzymes in the eicosanoid biosynthetic pathway. We found that the rate of formation of prostaglandin E2 (PGE2), an index of net cyclooxygenase (COX) activity, was decreased by 62% in the compared with the control mouse brain. The decrease was accompanied by a 50-60% decrease in mRNA and protein levels of COX-2, but no change in these levels in COX-1 or in PGE synthase. Brain 5-lipoxygenase (5-LO) and cytochrome P450 epoxygenase (cyp2C11) protein levels were also unaltered. Total and Ca2+-dependent PLA2 activities did not differ significantly between and control mice, and protein levels of type VI iPLA2 and type V sPLA2, normalized to actin, were unchanged. These results show that type V sPLA2 and type VI iPLA2 do not compensate for the loss of brain cPLA2 alpha, and that this loss has significant downstream effects on COX-2 expression and PGE2 formation, sparing other AA oxidative enzymes. This suggests that cPLA2 is critical for COX-2-derived eicosanoid production in mouse brain.  相似文献   

15.
Shimizu T  Ohto T  Kita Y 《IUBMB life》2006,58(5-6):328-333
Phosphatidylcholine (PC) is a major constituent of biological membranes and a component of serum lipoproteins and pulmonary surfactants. The PC and other glycerophospholipid compositions of membranes change dynamically through stimulus-dependent and independent pathways, principally by the action of two different types of enzymes; phospholipase A2 [EC 3.1.1.4] and acyl-CoA:lysophospholipid acyltransferase [EC 2.3.1.23]. Phospholipase A2 is a key enzyme that catalyzes deacylation of the sn-2 position of glycerophospholipids. This enzyme is critical in the remodeling of membrane lipids and formation of two subclasses of lipid mediators, fatty acid derivatives and lysophospholipids. Among many different subtypes of phospholipase A2 enzymes, we found that cytosolic phospholipase A2alpha (cPLA2alpha) is important in various pathological and physiological responses. Here, we summarize the phenotypes resulting from genetic ablation of cPLA2alpha, and the properties of newly discovered enzymes in the cPLA2 family. Comprehensive analysis of lipid mediators using liquid chromatography-tandem mass spectrometry (LC-MS/MS) is useful for understanding the roles of individual mediators in physiological and pathological processes.  相似文献   

16.
PLA2 (phospholipase A2) enzymes play critical roles in membrane phospholipid homoeostasis and in generation of lysophospholipid growth factors. In the present study, we show that the activity of the cytosolic iPLA2 (calcium-independent PLA2), but not that of the calcium-dependent cPLA2 (cytosolic PLA2), is required for growth-factor-independent, autonomous replication of ovarian carcinoma cells. Blocking iPLA2 activity with the pharmacological inhibitor BEL (bromoenol lactone) induces cell cycle arrest in S- and G2/M-phases independently of the status of the p53 tumour suppressor. Inhibition of iPLA2 activity also leads to modest increases in apoptosis of ovarian cancer cells. The S- and G2/M-phase accumulation is accompanied by increased levels of the cell cycle regulators cyclins B and E. Interestingly, the S-phase arrest is released by supplementing the growth factors LPA (lysophosphatidic acid) or EGF (epidermal growth factor). However, inhibition of iPLA2 activity with BEL remains effective in repressing growth-factor- or serum-stimulated proliferation of ovarian cancer cells through G2/M-phase arrest. Down-regulation of iPLA2b expression with lentivirus-mediated RNA interference inhibited cell proliferation in culture and tumorigenicity of ovarian cancer cell lines in nude mice. These results indicate an essential role for iPLA2 in cell cycle progression and tumorigenesis of ovarian carcinoma cells.  相似文献   

17.
It has been reported that planula larvae of some jellyfish prefer artificial substrates for settlement. This research focused on the relationship between the settlement of planulae and the wettability of artificial substrate surfaces. We used atmospheric plasmas to change the wettability of the surfaces of polycarbonate (PC) plates because plasma treatment has no chemical side effects. The treatment made the surfaces hydrophilic, as evidenced by the decrease of contact angle from 85° to 35°. X-ray photoelectron spectroscopy revealed that the change of wettability of the PC plates could be attributed to N2, which was probably ionized in the air above the plates. Scanning electron microscopy revealed no difference in the surface morphology of the plates before and after plasma treatment. Results of bioassays using treated PC plates showed that planulae tended to preferentially settle on hydrophobic surfaces.  相似文献   

18.
The Group VIA Phospholipase A(2) (iPLA(2)beta) is the first recognized cytosolic Ca(2+)-independent PLA(2) and has been proposed to participate in arachidonic acid (20:4) incorporation into glycerophosphocholine lipids, cell proliferation, exocytosis, apoptosis, and other processes. To study iPLA(2)beta functions, we disrupted its gene by homologous recombination to generate mice that do not express iPLA(2)beta. Heterozygous iPLA(2)beta(+/-) breeding pairs yield a Mendelian 1:2:1 ratio of iPLA(2)beta(+/+), iPLA(2)beta(+/-), and iPLA(2)beta(-/-) pups and a 1:1 male:female gender distribution of iPLA(2)beta(-/-) pups. Several tissues of wild-type mice express iPLA(2)beta mRNA, immunoreactive protein, and activity, and testes express the highest levels. Testes or other tissues of iPLA(2)beta(-/-) mice express no iPLA(2)beta mRNA or protein, but iPLA(2)beta(-/-) testes are not deficient in 20:4-containing glycerophosphocholine lipids, indicating that iPLA(2)beta does not play an obligatory role in formation of such lipids in that tissue. Spermatozoa from iPLA(2)beta(-/-) mice have reduced motility and impaired ability to fertilize mouse oocytes in vitro and in vivo, and inhibiting iPLA(2)beta with a bromoenol lactone suicide substrate reduces motility of wild-type spermatozoa in a time- and concentration-dependent manner. Mating iPLA(2)beta(-/-) male mice with iPLA(2)beta(+/+), iPLA(2)beta(+/-), or iPLA(2)beta(-/-) female mice yields only about 7% of the number of pups produced by mating pairs with an iPLA(2)beta(+/+) or iPLA(2)beta(+/-) male, but iPLA(2)beta(-/-) female mice have nearly normal fertility. These findings indicate that iPLA(2)beta plays an important functional role in spermatozoa, suggest a target for developing male contraceptive drugs, and complement reports that disruption of the Group IVA PLA(2) (cPLA(2)alpha) gene impairs female reproductive ability.  相似文献   

19.
We investigated changes in cytosolic phospholipase A(2) (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)) activities in bovine retina capillary pericytes after stimulation with 50 microM amyloid-beta (Abeta) (1-42) and its (25-35) fragment, over 24 h (mild, sublethal model of cell damage). In the presence of Abeta peptides, we found that cPLA(2) activity was increased and translocated from the cytosolic fraction to the membrane system, particularly in the nuclear region. Reversed-sequence Abeta(35-25) peptide did not stimulate or induce cPLA(2) translocation. Exposure to both Abeta peptides had no significant effect on cPLA(2) protein content as tested by Western immunoblot analysis. The addition of Abetas to quiescent pericytes was followed by phosphorylation of cPLA(2) and arachidonic acid release. Treatment with inhibitors (AACOCF(3), staurosporine and cycloheximide) resulted in a sharp decrease in basal and stimulated cPLA(2) activity. Inactivating effects of bromoenol lactone (BEL), inhibitor of iPLA(2), demonstrated that the stimulation of total PLA(2) activity by Abetas was mediated by both PLA(2) enzymes. Taken together with our previous observations that both Abeta peptides may induce hydrolysis of phosphatidylcholine, the present results provide evidence that this process is cooperatively mediated by cPLA(2) activation/translocation and iPLA(2) activation. The effect is very likely triggered by a mild prooxidant mechanism which was not able to divert the cell to degeneration. The data confirm the hypothesis that pericytes could be a target of potential vascular damage and reactivity during processes involving amyloid accumulation.  相似文献   

20.
Oligomeric amyloid-beta peptide (Abeta) is known to induce cytotoxic effects and to damage cell functions in Alzheimer's disease. However, mechanisms underlying the effects of Abeta on cell membranes have yet to be fully elucidated. In this study, Abeta 1-42 (Abeta(42)) was shown to cause a temporal biphasic change in membranes of astrocytic DITNC cells using fluorescence microscopy of Laurdan. Abeta(42) made astrocyte membranes became more molecularly-disordered within the first 30 min to 1 h, but gradually changed to more molecularly-ordered after 3 h. However, Abeta(42) caused artificial membranes of vesicles made of rat whole brain lipid extract to become more disordered only. The trend for more molecularly-ordered membranes in astrocytes induced by Abeta(42) was abrogated by either an NADPH oxidase inhibitor, apocynin, or an inhibitor of cytosolic phospholipase A(2) (cPLA(2)), but not by an inhibitor of calcium-independent PLA(2) (iPLA(2)). Apocynin also suppressed the increased production of superoxide anions (O(2)(-)) and phosphorylation of cPLA(2) induced by Abeta(42). In addition, hydrolyzed products of cPLA(2), arachidonic acid (AA), but not lysophosphatidylcholine (LPC) caused astrocyte membranes to become more molecularly-ordered. These results suggest (1) a direct interaction of Abeta(42) with cell membranes making them more molecularly-disordered, and (2) Abeta(42) also indirectly makes membranes become more molecularly-ordered by triggering the signaling pathway involving NADPH oxidase and cPLA(2) in astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号