首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
IFN-gamma is an effector cytokine of cell-mediated immunity that plays an essential role in both innate and adaptive phases of an immune response. Interestingly, in several Th1-dependent autoimmune models, lack of IFN-gamma is associated with an acceleration of disease. To distinguish the influence of IFN-gamma on the polarization of naive precursors from the influence on effector cells, we used an adoptive transfer model of differentiated Ag-specific Th1 cells. In this study, IFN-gamma displayed a dual function in a Th1-dependent immune reaction. In the early phase, IFN-gamma accelerated the inflammation, whereas in the late phase it mediated the process of self-limitation. We demonstrated that IFN-gamma limits the number of Th1 effector cells after Ag challenge. Studies using IFN-gammaR-/- mice as recipients showed that IFN-gamma acts indirectly via host cells to regulate the pool size of Th1 cells. NO was a downstream effector molecule. Transfer experiments of Th1 cells into IFN-gamma-/- mice revealed that Th1 cells control both themselves and the corresponding inflammation by the release of IFN-gamma. Thus, the proinflammatory cytokine IFN-gamma can act as a negative feedback regulator to control Th1-mediated immune responses.  相似文献   

2.
Respiratory syncytial virus (RSV) is the leading cause of respiratory disease in infants worldwide. The induction of innate immunity and the establishment of adaptive immune responses are influenced by the recognition of pathogen-associated molecular patterns by TLRs. One of the primary pathways for TLR activation is by MyD88 adapter protein signaling. The present studies indicate that MyD88 deficiency profoundly impacts the pulmonary environment in RSV-infected mice characterized by the accumulation of eosinophils and augmented mucus production. Although there was little difference in CD4 T cell accumulation, there was also a significant decrease in conventional dendritic cells recruitment to the lungs of MyD88(-/-) mice. The exacerbation of RSV pathophysiology in MyD88(-/-) mice was associated with an enhanced Th2 cytokine profile that contributed to an inappropriate immune response. Furthermore, bone marrow-derived dendritic cells (BMDC) isolated from MyD88(-/-) mice were incapable of producing two important Th1 instructive signals, IL-12 and delta-like4, upon RSV infection. Although MyD88(-/-) BMDCs infected with RSV did up-regulate costimulatory molecules, they did not up-regulate class II as efficiently and stimulated less IFN-gamma from CD4(+) T cells in vitro compared with wild-type BMDCs. Finally, adoptive transfer of C57BL/6 BMDCs into MyD88(-/-) mice reconstituted Th1 immune responses in vivo, whereas transfer of MyD88(-/-) BMDCs into wild-type mice skewed the RSV responses toward a Th2 phenotype. Taken together, our data indicate that MyD88-mediated pathways are essential for the least pathogenic responses to this viral pathogen through the regulation of important Th1-associated instructive signals.  相似文献   

3.
The induction and role of nitric oxide (NO) during antigen presentation by macrophages to T helper (Th) cell subsets was examined. When cultured with Th1 clones, macrophage APC produced NO only in the presence of cognate Ag, which in turn suppressed T cell proliferation. IFN-gamma production by the activated Th1 cells was essential for the induction of NO. Th2 cells presented with the same cognate Ag did not induce NO production and proliferated uninhibited. Coactivation of Th1 and Th2 cells specific for the same Ag indicated that Th2 cells did not inhibit NO production, but were sensitive to NO induced by stimulated Th1 cells. Antigenic activation of Th2 cells in the presence of rIFN-gamma resulted in NO-mediated inhibition of proliferation. Th2 cells provided only a cell-associated cofactor, whereas Th1 cells secreted a soluble cofactor for IFN-gamma as well, i.e., TNF-alpha. Finally, a role for IFN-gamma and NO during immune responses was studied in spleen cells obtained from immunized IFN-gamma(-/-) mice. NO production and subsequent inhibition of Ag-specific proliferation ex vivo was observed only after the addition of rIFN-gamma. These studies suggest an IFN-gamma-dependent regulatory role for NO during Ag-specific Th cell activation involving macrophages, with obvious implications for Th subset-dependent immune responses in general.  相似文献   

4.
Bromelain activates murine macrophages and natural killer cells in vitro   总被引:1,自引:0,他引:1  
The innate immune response is critical for effective immunity against most pathogens. In this study, we show that bromelain, a mixture of cysteine proteases, can enhance IFN-gamma-mediated nitric oxide and TNFalpha production by macrophages. Bromelain's effect was independent of endotoxin receptor activation and was not caused by direct modulation of IFN-gamma receptors. Instead, bromelain either enhanced or acted synergistically with IFN-gamma receptor-mediated signals. These effects were seen in both RAW 264.7, a macrophage cell line, and primary macrophage populations. Bromelain also increased IL-2- and IL-12-mediated IFN-gamma production by NK cells. These results indicate a potential role for bromelain in the activation of inflammatory responses in situations where they may be deficient, such as may occur in immunocompromised individuals.  相似文献   

5.
The control of Mycobacterium tuberculosis (Mtb) infection is heavily dependent on the adaptive Th1 cellular immune response. Paradoxically, optimal priming of the Th1 response requires activation of priming dendritic cells with Th1 cytokine IFN-gamma. At present, the innate cellular mechanisms required for the generation of an optimal Th1 T cell response remain poorly characterized. We hypothesized that innate Mtb-reactive T cells provide an early source of IFN-gamma to fully activate Mtb-exposed dendritic cells. Here, we report the identification of a novel population of Mtb-reactive CD4(-) alphabetaTCR(+) innate thymocytes. These cells are present at high frequencies, respond to Mtb-infected cells by producing IFN-gamma directly ex vivo, and display characteristics of effector memory T cells. This novel innate population of Mtb-reactive T cells will drive further investigation into the role of these cells in the containment of Mtb following infectious exposure. Furthermore, this is the first demonstration of a human innate pathogen-specific alphabetaTCR(+) T cell and is likely to inspire further investigation into innate T cells recognizing other important human pathogens.  相似文献   

6.
TL1A is a novel TNF-like factor that acts as a costimulator of IFN-gamma secretion through binding to the death domain-containing receptor, DR3. The aim of this study was to test the hypothesis that TL1A may play an important role in inflammatory bowel disease (IBD) by functioning as a Th1-polarizing cytokine. The expression, cellular localization, and functional activity of TL1A and DR3 were studied in intestinal tissue specimens as well as isolated lamina propria mononuclear cells from IBD patients and controls. TL1A mRNA and protein expression was up-regulated in IBD, particularly in involved areas of Crohn's disease (CD; p < 0.03 vs control). TL1A production was localized to the intestinal lamina propria in macrophages and CD4(+) and CD8(+) lymphocytes from CD patients as well as in plasma cells from ulcerative colitis patients. The amount of TL1A protein and the number of TL1A-positive cells correlated with the severity of inflammation, most significantly in CD. Increased numbers of immunoreactive DR3-positive T lymphocytes were detected in the intestinal lamina propria from IBD patients. Addition of recombinant human TL1A to cultures of PHA-stimulated lamina propria mononuclear from CD patients significantly augmented IFN-gamma production by 4-fold, whereas a minimal effect was observed in control patients. Our study provides evidence for the first time that the novel cytokine TL1A may play an important role in a Th1-mediated disease such as CD.  相似文献   

7.
The development of type 1 diabetes in animal models is T cell and macrophage dependent. Islet inflammation begins as peripheral benign Th2 type insulitis and progresses to destructive Th1 type insulitis, which is driven by the innate immune system via secretion of IL-12 and IL-18. We now report that daily application of IL-18 to diabetes-prone female nonobese diabetic mice, starting at 10 wk of age, suppresses diabetes development (p < 0.001, 65% in sham-treated animals vs 33% in IL-18-treated animals by 140 days of age). In IL-18-treated animals, we detected significantly lower intraislet infiltration (p < 0.05) and concomitantly an impaired progression from Th2 insulitis to Th1-dependent insulitis, as evidenced from IFN-gamma and IL-10 mRNA levels in tissue. The deficient progression was probably due to lesser mRNA expression of the Th1 driving cytokines IL-12 and IL-18 by the innate immune system (p < 0.05). Furthermore, the mRNA expression of inducible NO synthase, a marker of destructive insulitis, was also not up-regulated in the IL-18-treated group. IL-18 did not exert its effect at the levels of islet cells. Cultivation of islets with IL-18 affected NO production or mitochondrial activity and did not protect from the toxicity mediated by IL-1beta, TNF-alpha, and IFN-gamma. In conclusion, we show for the first time that administration of IL-18, a mediator of the innate immune system, suppresses autoimmune diabetes in nonobese diabetic mice by targeting the Th1/Th2 balance of inflammatory immune reactivity in the pancreas.  相似文献   

8.
Alzheimer's disease is marked by progressive accumulation of amyloid beta-peptide (Abeta) which appears to trigger neurotoxic and inflammatory cascades. Substantial activation of microglia as part of a local innate immune response is prominent at sites of Abeta plaques in the CNS. However, the role of activated microglia as Abeta APCs and the induction of adaptive immune responses has not been investigated. We have used primary microglial cultures to characterize Abeta-Ag presentation and interaction with Abeta-specific T cells. We found that IFN-gamma-treated microglia serve as efficient Abeta APCs of both Abeta1-40 and Abeta1-42, mediating CD86-dependent proliferation of Abeta-reactive T cells. When cultured with Th1 and Th2 subsets of Abeta-reactive T cells, Th1, but not Th2, cells, underwent apoptosis after stimulation, which was accompanied by increased levels of IFN-gamma, NO, and caspase-3. T cell apoptosis was prevented in the presence of an inducible NO synthase type 2 inhibitor. Microglia-mediated proliferation of Abeta-reactive Th2 cells was associated with expression of the Th2 cytokines IL-4 and IL-10, which counterbalanced the toxic levels of NO induced by Abeta. Our results demonstrate NO-dependent apoptosis of T cells by Abeta-stimulated microglia which may enhance CNS innate immune responses and neurotoxicity in Alzheimer's disease. Secretion of NO by stimulated microglia may underlie a more general pathway of T cell death in the CNS seen in neurodegenerative diseases. Furthermore, Th2 type T cell responses may have a beneficial effect on this process by down-regulation of NO and the proinflammatory environment.  相似文献   

9.
10.
Celiac disease (CD) results from a permanent intolerance to dietary gluten and is due to a massive T cell-mediated immune response to gliadin, the main component of gluten. In this disease, the regulation of immune responses to dietary gliadin is altered. Herein, we investigated whether IL-10 could modulate anti-gliadin immune responses and whether gliadin-specific type 1 regulatory T (Tr1) cells could be isolated from the intestinal mucosa of CD patients in remission. Short-term T cell lines were generated from jejunal biopsies, either freshly processed or cultured ex vivo with gliadin in the presence or absence of IL-10. Ex vivo stimulation of CD biopsies with gliadin in the presence of IL-10 resulted in suppression of Ag-specific proliferation and cytokine production, indicating that pathogenic T cells are susceptible to IL-10-mediated immune regulation. T cell clones generated from intestinal T cell lines were tested for gliadin specificity by cytokine production and proliferative responses. The majority of gliadin-specific T cell clones had a Th0 cytokine production profile with secretion of IL-2, IL-4, IFN-gamma, and IL-10 and proliferated in response to gliadin. Tr1 cell clones were also isolated. These Tr1 cells were anergic, restricted by DQ2 (a CD-associated HLA), and produced IL-10 and IFN-gamma, but little or no IL-2 or IL-4 upon activation with gliadin or polyclonal stimuli. Importantly, gliadin-specific Tr1 cell clones suppressed proliferation of pathogenic Th0 cells. In conclusion, dietary Ag-specific Tr1 cells are present in the human intestinal mucosa, and strategies to boost their numbers and/or function may offer new therapeutic opportunities to restore gut homeostasis.  相似文献   

11.
Invariant NKT cells (iNKT cells) have been reported to play a role not only in innate immunity but also to regulate several models of autoimmunity. Furthermore, iNKT cells are necessary for the generation of the prototypic eye-related immune regulatory phenomenon, anterior chamber associated immune deviation (ACAID). In this study, we explore the role of iNKT cells in regulation of autoimmunity to retina, using a model of experimental autoimmune uveitis (EAU) in mice immunized with a uveitogenic regimen of the retinal Ag, interphotoreceptor retinoid-binding protein. Natural strain-specific variation in iNKT number or induced genetic deficiencies in iNKT did not alter baseline susceptibility to EAU. However, iNKT function seemed to correlate with susceptibility and its pharmacological enhancement in vivo by treatment with iNKT TCR ligands at the time of uveitogenic immunization reproducibly ameliorated disease scores. Use of different iNKT TCR ligands revealed dependence on the elicited cytokine profile. Surprisingly, superior protection against EAU was achieved with alpha-C-GalCer, which induces a strong IFN-gamma but only a weak IL-4 production by iNKT cells, in contrast to the ligands alpha-GalCer (both IFN-gamma and IL-4) and OCH (primarily IL-4). The protective effect of alpha-C-GalCer was associated with a reduction of adaptive Ag-specific IFN-gamma and IL-17 production and was negated by systemic neutralization of IFN-gamma. These data suggest that pharmacological activation of iNKT cells protects from EAU at least in part by a mechanism involving innate production of IFN-gamma and a consequent dampening of the Th1 as well as the Th17 effector responses.  相似文献   

12.
NK and NKT cell functions in immunosenescence   总被引:6,自引:0,他引:6  
Immunosenescence is defined as the state of dysregulated immune function that contributes to the increased susceptibility to infection, cancer and autoimmune diseases observed in old organisms, including humans. However, dysregulations in the immune functions are normally counterbalanced by continuous adaptation of the body to the deteriorations that occur over time. These adaptive changes are likely to occur in healthy human centenarians. Both innate (natural) and adaptive (acquired) immune responses decline with advancing age. Natural killer (NK) and natural killer T (NKT) cells represent the best model to describe innate and adaptive immune response in aging. NK and NKT cell cytotoxicity decreases in aging as well as interferon-gamma (IFN-gamma) production by both activated cell types. Their innate and acquired immune responses are preserved in very old age. However, NKT cells bearing T-cell receptor (TCR) gammadelta also display an increased cytotoxicity and IFN-gamma production in very old age. This fact suggests that NKT cells bearing TCRgammadelta are more involved in maintaining innate and adaptive immune response in aging leading to successful aging. The role played by the neuroendocrine-immune network and by nutritional factors, such as zinc, in maintaining NK and NKT cell functions in aging is discussed.  相似文献   

13.
昆虫天然免疫反应分子机制研究进展   总被引:4,自引:0,他引:4  
张明明  初源  赵章武  安春菊 《昆虫学报》2012,55(10):1221-1229
昆虫体内缺乏高等脊椎动物所具有的获得性免疫系统, 只能依赖发达的天然免疫系统抵抗细菌、 真菌、 病毒等外源病原物的侵染。本文概括了昆虫天然免疫反应发生和作用的分子机制相关进展, 重点阐述了重要免疫相关因子在昆虫天然免疫反应中的功能和作用机制。昆虫天然免疫反应分为体液免疫和细胞免疫两种, 二者共同作用完成对病原物的吞噬 (phagocytosis)、 集结 (nodulation)、 包囊 (encapsulation)、 凝结 (coagulation)和黑化(melanization)等。当昆虫受到外界病原物的侵染时, 首先通过体内的模式识别蛋白(pattern recognition proteins/receptor, PRPs)识别并结合病原物表面特有的模式分子(pathogen-associated molecular pattern, PAMPs), 继而一系列包括丝氨酸蛋白酶和丝氨酸蛋白酶抑制剂在内的级联激活反应被激活和调控, 产生抗菌肽、 黑色素等免疫效应分子, 清除或杀灭外源物。抗菌肽是一类小分子量的阳离子肽, 具有广谱抗菌活性, 针对不同类型的病原物, 抗菌肽的产生机制也不尽相同。昆虫体内存在着两种信号转导途径调节抗菌肽的产生: 一是由真菌和大部分革兰氏阳性菌激活的Toll途径; 二是由革兰氏阴性菌激活的Imd途径(immune deficiency pathway)。这两个途径通过激活不同转录因子调控不同抗菌肽基因的表达参与昆虫体内的天然免疫反应。  相似文献   

14.
IL-12, produced by APCs during the initial stages of an immune response, plays a pivotal role in the induction of IFN-gamma by NK and gammadeltaT cells and in driving the differentiation of Th1 cells, thus providing a critical link between innate and acquired immunity. Due to the unique position occupied by IL-12 in the regulation of immunity, many mechanisms have evolved to modulate IL-12 production. We have shown previously that macrophage-stimulating protein (MSP), the ligand for the stem cell-derived tyrosine kinase/recepteur d'origine nantais (RON) receptor, inhibits NO production by macrophages in response to IFN-gamma and enhances the expression of arginase. Mice lacking RON exhibit increased inflammation in a delayed-type hypersensitivity reaction and increased susceptibility to endotoxic shock. In this study we demonstrate that pretreatment of macrophages with MSP before IFN-gamma and LPS results in the complete inhibition of IL-12 production due to suppression of p40 expression. This response is mediated by the RON receptor, and splenocytes from RON(-/-) animals produce increased levels of IFN-gamma. MSP pretreatment of macrophages resulted in decreased tyrosine phosphorylation of Stat-1 and decreased expression of IFN consensus sequence binding protein in response to inflammatory cytokines. In addition to IL-12, the expression of IL-15 and IL-18, cytokines that are also dependent on IFN consensus sequence binding protein activation, is inhibited by pretreatment with MSP before IFN-gamma and LPS. We also show that the ability of MSP to inhibit IL-12 production is independent of IL-10. Taken together, these results suggest that MSP may actively suppress cell-mediated immune responses through its ability to down-regulate IL-12 production and thus inhibit classical activation of macrophages.  相似文献   

15.
16.
17.
18.
Severe injury induces immune dysfunction resulting in increased susceptibility to opportunistic infections. Previous studies from our laboratory have demonstrated that post-burn immunosuppression is mediated by nitric oxide (NO) due to the increased expression of macrophage inducible nitric oxide synthase (iNOS). In contrast, others suggest that injury causes a phenotypic imbalance in the regulation of Th1- and Th2 immune responses. It is unclear whether or not these apparently divergent mediators of immunosuppression are interrelated. To study this, C57BL/6 mice were subjected to major burn injury and splenocytes were isolated 7 days later and stimulated with antiCD3. Burn injury induced NO-mediated suppression of proliferative responses that was reversed in the presence of the NOS inhibitor L-monomethyl-L-arginine and subsequently mimicked by the addition of the NO donor, S-nitroso-N-acetyl-penicillamine (SNAP). SNAP also dose-dependently suppressed IFN-gamma and IL-2 (Th1), but not IL-4 and IL-10 (Th2) production. Delaying the addition of SNAP to the cultures by 24 h prevented the suppression of IFN-gamma production. The Th2 shift in immune phenotype was independent of cGMP and apoptosis. The addition of SNAP to cell cultures also induced apoptosis, attenuated mitochondrial oxidative metabolism and induced mitochondrial membrane depolarization. However, these detrimental cellular effects of NO were observed only at supra-physiologic concentrations (>250 microM). In conclusion, these findings support the concept that NO induces suppression of cell-mediated immune responses by selective action on Th1 T cells, thereby promoting a Th2 response.  相似文献   

19.
The recognition of peptidoglycan by cells of the innate immune system has been controversial; both TLR2 and nucleotide-binding oligomerization domain-2 (NOD2) have been implicated in this process. In the present study we demonstrate that although NOD2 is required for recognition of peptidoglycan, this leads to strong synergistic effects on TLR2-mediated production of both pro- and anti-inflammatory cytokines. Defective IL-10 production in patients with Crohn's disease bearing loss of function mutations of NOD2 may lead to overwhelming inflammation due to a subsequent Th1 bias. In addition to the potentiation of TLR2 effects, NOD2 is a modulator of signals transmitted through TLR4 and TLR3, but not through TLR5, TLR9, or TLR7. Thus, interaction between NOD2 and specific TLR pathways may represent an important modulatory mechanism of innate immune responses.  相似文献   

20.
Experimental autoimmune uveoretinitis (EAU) is a T cell-mediated autoimmune disease of posterior uvea that closely resembles a human disease. The uveitogenic effector T cell has a Th1-like phenotype [high interferon-gamma (IFN-gamma), low interleukin-4 (IL-4)], and genetic susceptibility to EAU that is associated with an elevated Th1 response. Suppression of CD4+ Th1 cells for the treatment of autoimmune disease is an attractive potential therapeutic approach. Nitric oxide (NO) has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. In this study, we investigated the potential role of NO as an immunoregulator to alter Th1/Th2 cytokine production, as well as to inhibit the interphotoreceptor retinoid binding protein (IRBP)-induced EAU, a CD4+ Th1 cell-mediated autoimmune disease. Injection of IRBP (100 microg) into two footpads resulted in severe EAU. The beginning peak of the disease was days 12 to 15 after immunization. Oral treatment with molsidomine (MSDM), a NO donor, began 24 h before IRBP immunization to the end of the experiments, which resulted in a significant inhibition of the disease by clinical and histopathological criteria. When MSDM was administered until day 21, a complete reduction of incidence and severity of EAU was observed. To investigate the cytokine alterations from Th1 to Th2 cytokines by MSDM, the cytokines were assayed in a culture medium of IRBP-stimulated inguinal lymphocytes. IRBP-immunized rats secreted a high concentration of IFN-gamma and a low concentration of IL-10. In contrast, MSDM treatment enhanced IL-10 secretion and tended to decrease IFN-gamma secretion. In conclusion, we show that the administration of NO suppresses EAU by altering the Th1/Th2 balance of inflammatory immune responses. We suggest that NO may be useful in the therapeutic control of autoimmune uveitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号