首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 192 毫秒
1.
Asparagine synthetase was increased in cultured mouse spleen lymphocytes after stimulation by phytohemagglutinin. After a lag period of about 24h, the enzyme activity level rose sharply by 48h, reached its maximum at 72h, and decreased thereafter. The time course of the change in the enzyme activity was similar to that of the change in the rate of DNA synthesis. From the results that there was no increase of the activity of asparagine synthetase at the time induction of ornithine decarboxylase would occur (6h), it seems unlikely that asparagine synthesized in the cells contributes to the enhancement of ornithine decarboxylase during the activation of lymphocytes. The increase of asparagine synthetase activity was inhibited by cycloheximide and somewhat by actinomycin D, suggesting de novo enzyme synthesis during the stimulation.  相似文献   

2.

Background

Previous observations demonstrate that Cftr-null cells and tissues exhibit alterations in cholesterol processing including perinuclear cholesterol accumulation, increased de novo synthesis, and an increase in plasma membrane cholesterol accessibility compared to wild type controls. The hypothesis of this study is that membrane cholesterol accessibility correlates with CFTR genotype and is in part influenced by de novo cholesterol synthesis.

Methods

Electrochemical detection of cholesterol at the plasma membrane is achieved with capillary microelectrodes with a modified platinum coil that accepts covalent attachment of cholesterol oxidase. Modified electrodes absent cholesterol oxidase serves as a baseline control. Cholesterol synthesis is determined by deuterium incorporation into lipids over time. Incorporation into cholesterol specifically is determined by mass spectrometry analysis. All mice used in the study are on a C57Bl/6 background and are between 6 and 8 weeks of age.

Results

Membrane cholesterol measurements are elevated in both R117H and ΔF508 mouse nasal epithelium compared to age-matched sibling wt controls demonstrating a genotype correlation to membrane cholesterol detection. Expression of wt CFTR in CF epithelial cells reverts membrane cholesterol to WT levels further demonstrating the impact of CFTR on these processes. In wt epithelial cell, the addition of the CFTR inhibitors, Gly H101 or CFTRinh-172, for 24 h surprisingly results in an initial drop in membrane cholesterol measurement followed by a rebound at 72 h suggesting a feedback mechanism may be driving the increase in membrane cholesterol. De novo cholesterol synthesis contributes to membrane cholesterol accessibility.

Conclusions

The data in this study suggest that CFTR influences cholesterol trafficking to the plasma membrane, which when depleted, leads to an increase in de novo cholesterol synthesis to restore membrane content.  相似文献   

3.
The role of PARP, a nuclear enzyme involved in DNA synthesis, repair and cell transformation, was studies during liver regeneration in hypothyroid animals. Hypothyroidism was induced by in vivo administration of propylthiouracil. In regenerating euthyroid animals PARP activity is stimulated showing an early and significant increase at 1.5 h with a maximum at 6 h after partial hepatectomy. Such an increase returns to control values within 18 h preceding the onset of DNA synthesis. A markedly different behavior, with respect to euthyroids, has been evidenced in hypothyroid rats. At first, liver PARP level was about 2-fold higher in non regenerating hypothyroid rats with respect to control euthyroids. During regeneration, PTU-treated animals show a net decrease in PARP activity, with a minimum at 6-9 h after partial hepatectomy. The activity returns to control levels within 24 days. The minimum in PARP activity anticipates, also in this case, the onset of DNA synthesis, which exhibits a maximum at 15-18 h. During liver regeneration PARP activity shows modifications related to the beginning of de novo DNA synthesis. Furthermore, these variations in turn undergo the effects of hypothyroidism.  相似文献   

4.
We examined the relationship between the induction of an increase in the level of glutathione and the elevation of natural killer (NK) activity in mouse splenocytes by a low dose of gamma rays. The glutathione levels in mouse splenocytes increased significantly between 2 h and 6 h after whole-body gamma irradiation at 0.5 Gy, peaked at 4 h, and then decreased almost to the level before irradiation by 12 h postirradiation. A significant enhancement of NK activity was found in the splenocytes obtained from whole-body-irradiated mice between 4 and 6 h postirradiation. Reduced glutathione (GSH) added exogenously to splenocytes obtained from normal mice enhanced both the total cellular glutathione content and the NK activity in a dose-dependent manner. Other precursors of de novo GSH synthesis, such as cysteine, N-acetylcysteine and oxidized glutathione, also increased the activity. These enhancements were completely blocked by buthionine sulfoximine, an inhibitor of de novo GSH synthesis. We conclude that the induction of endogenous glutathione in living cells immediately after low-dose gamma irradiation is at least partially responsible for the appearance of enhanced NK activity.  相似文献   

5.
The hexose monophosphate (HMP) shunt acts as an essential component of cellular metabolism in maintaining carbon homeostasis. The HMP shunt comprises two phases viz. oxidative and nonoxidative, which provide different intermediates for the synthesis of biomolecules like nucleotides, DNA, RNA, amino acids, and so forth; reducing molecules for anabolism and detoxifying the reactive oxygen species during oxidative stress. The HMP shunt is significantly important in the liver, adipose tissue, erythrocytes, adrenal glands, lactating mammary glands and testes. We have researched the articles related to the HMP pathway, its metabolites and disorders related to its metabolic abnormalities. The literature for this paper was taken typically from a personal database, the Cochrane database of systemic reviews, PubMed publications, biochemistry textbooks, and electronic journals uptil date on the hexose monophosphate shunt. The HMP shunt is a tightly controlled metabolic pathway, which is also interconnected with other metabolic pathways in the body like glycolysis, gluconeogenesis, and glucuronic acid depending upon the metabolic needs of the body and depending upon the biochemical demand. The HMP shunt plays a significant role in NADPH2 formation and in pentose sugars that are biosynthetic precursors of nucleic acids and amino acids. Cells can be protected from highly reactive oxygen species by NADPH 2. Deficiency in the hexose monophosphate pathway is linked to numerous disorders. Furthermore, it was also reported that this metabolic pathway could act as a therapeutic target to treat different types of cancers, so treatments at the molecular level could be planned by limiting the synthesis of biomolecules required for proliferating cells provided by the HMP shunt, hence, more experiments still could be carried out to find additional discoveries.  相似文献   

6.
Administration of clofibrate to the rat increased several fold the activity of malic enzyme in the liver. Clofibrate treatment resulted also in an increased activity of the hepatic hexose monophosphate shunt dehydrogenases but was without effect on NADP-linked isocitrate dehydrogenase. The increased activity of malic enzyme in the liver resulting from the administration of clofibrate was inhibited by ethionine and puromycin, which suggests that de novo synthesis of the enzyme protein did occur as the result of the drug action. In contrast to the liver malic enzyme, the enzyme activity in kidney cortex increased only two-fold, whereas in the heart and skeletal muscle the activity was not affected by clofibrate administration.  相似文献   

7.
The absolute rate of cholesterol acquisition from de novo synthesis and from receptor-dependent and receptor-independent low-density lipoprotein (LDL) uptake was determined in the adrenal glands of the rat, hamster and rabbit under in vivo conditions. The rate of incorporation of [3H]water into cholesterol in the adrenal gland was much higher in the hamster (1727 nmol/h per g) and rabbit (853 nmol/h per g) than in the rat (71 nmol/h per g). Assuming that 23 atoms of 3H are incorporated into the cholesterol molecule during its biosynthesis, the absolute rates of cholesterol synthesis were then calculated to equal 59, 29 and 2.4 micrograms/h per g of adrenal gland in the hamster, rabbit and rat, respectively. Rates of LDL-cholesterol uptake were measured using a primed continuous infusion of [14C]sucrose-labeled homologous LDL (total LDL transport) and methylated human LDL (receptor-independent LDL transport). The rate of total LDL-cholesterol uptake in the adrenal gland was much higher in the rabbit (227 micrograms/h per g) than in the rat (18 micrograms/h per g) or hamster (6 micrograms/h per g). In all three species LDL uptake was mediated largely (greater than 93%) by receptor-dependent mechanisms. In terms of total cholesterol acquisition, the hamster adrenal gland derived 10-times more cholesterol from de novo synthesis than from LDL uptake, whereas the converse was true in the rabbit. Rates of de novo synthesis and LDL-cholesterol uptake were both low in the rat adrenal gland, which is known to derive cholesterol mainly from circulating high-density lipoproteins. Thus, the adrenal gland acquires cholesterol for hormone synthesis from at least three different sources and the quantitative importance of these sources varies markedly in different animal species, including man.  相似文献   

8.
The role of endogenous regucalcin in the regulation of deoxyribonuleic acid (DNA) synthesis in the nuclei of the cloned rat hepatoma cells (H4-II-E) with proliferative cells was investigated. Cells were cultured for 6-96 h in a alpha-minimum essential medium (alpha-MEM) containing fetal bovine serum (FBS; 1 or 10%). Cell number was significantly increased between 24 and 96 h after culture with 10% FBS; cell proliferation was markedly stimulated by culture with 10% FBS as compared with that of 1% FBS. In vitro DNA synthesis activity in the nuclei of cells was significantly elevated 6 h after culture with 10% FBS and its elevation was remarkable at 12 and 24 h after the culture. Nuclear DNA synthesis activity was significantly reduced in the presence of various protein kinase inhibitors (PD98059, staurosprine, or trifluoperazine) in the reaction mixture containing the nuclei of cells cultured for 12 and 24 h with FBS (1 and 10%). The addition of regucalcin (10(-7) and 10(-6)M) in the reaction mixture caused a significant inhibition of nuclear DNA synthesis activity. The presence of anti-regucalcin monoclonal antibody (25-100 ng/ml) in the reaction mixture containing the nuclei of cells cultured for 24 h with 10% FBS resulted in a significant increase in nuclear DNA synthesis activity. This increase was completely blocked by the addition of regucalcin (10(-6) M). The effect of anti-regucalcin antibody (100 ng/ml) in increasing nuclear DNA synthesis activity was significantly inhibited in the presence of various protein kinase inhibitors. DNA synthesis activity was significantly enhanced in the presence of anti-regucalcin antibody (100 ng/ml) in the reaction mixture containing the nuclei of cells cultured for 24 h with 10% FBS in the presence of Bay K 8644 (2.5 x 10(-6) M). Culture with Bay K 8644 did not cause a significant increase in DNA synthesis activity in the absence of anti-regucalcin antibody. The present study demonstrates that endogenous regucalcin plays a suppressive role in the enhancement of nuclear DNA synthesis with proliferative cells.  相似文献   

9.
Hepatic cholesterol in lead nitrate induced liver hyperplasia   总被引:4,自引:0,他引:4  
Wistar rats treated with lead nitrate were used in these experiments to provide evidence of the possible correlation between hyperplasia, induced cholesterol synthesis and the levels of glucose-6-phosphate dehydrogenase (G-6-PD) in the liver. Lead treatment increases liver weight, hepatic cholesterol esters and the relative content of free cholesterol. An increase of the incorporation of tritiated water in free and cholesterol esters was also observed. The effect of lead resulted in an increase of hepatic G-6-PD at all times considered. The correlation between these parameters and hyperplasia are discussed.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号