首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
Previous studies have shown addition of light liquid paraffin to enhance the elimination of organochlorine xenobiotics. In the present study the effect of paraffin on the elimination of [14C]hexachlorobenzene (HCB) was compared with the effect of possible alternative compounds, squalane and sucrose polyester (SPE). Four groups of 7 rats were fed a diet containing 1.5 ppm [14C]HCB for 4 days followed by 10 days on HCB-free diet. Thereafter one group (control) remained on this diet whereas the other 3 groups received a diet supplemented with 8% (w/w) paraffin, squalane or SPE, respectively. Radioactivity in urine and faeces was measured daily and at the end of the experiment in samples of abdominal fat, muscle, liver, kidney and blood. Dietary treatment with either paraffin, squalane or SPE markedly enhanced faecal excretion of [14C]HCB, whereas urinary excretion was not affected. Both the time course as well as the extent of faecal [14C]HCB elimination were similar in the treated groups. After 3 weeks of treatment the amount of [14C]HCB excreted with faeces was about three times higher in treated animals than in controls. The half-life (t1/2) of [14C]HCB elimination from the body was markedly decreased in treated animals (mean 34–38 days) compared to controls (110 days). [14C]HCB concentrations in some major tissues were significantly reduced to the same extent by all three dietary regimens. Thus squalane and SPE are as effective as paraffin in removing HCB from contaminated animals.  相似文献   

2.
Gary Bailin   《BBA》1977,462(3):689-699
A human skeletal actin · tropomyosin · troponin complex was phosphorylated in the presence of [γ-32P]ATP, Mg2+, adenosine 3′:5′-monophosphate (cyclic AMP) and cyclic AMP-dependent protein kinase (protein kinase). Phosphorylation was not observed when the actin complex was incubated in the absence of protein kinase or 1 μM cyclic AMP. In the presence of 10−7 M Ca2+ and protein kinase 0.1 mole of [32P]phosphate per 196 000 g of protein was incorporated. This was two-fold higher than the [32P]phosphate content of a rabbit skeletal actin complex but two-fold lower than that of a bovine cardiac actin complex. At high Ca2+, 5 · 10−5 M, little change in the phosphorylation of a human skeletal actin complex occurred. Phosphoserine and phosphothreonine were identified in the [32P]phosphorylated actin complex. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate showed that 60% of the label was associated with the tropomyosin binding component of troponin. The inhibitory component of troponin contained 16% of the bound [32P]phosphate. Increasing the Ca2+ concentration did not significantly decrease the [32P]phosphate content of the phosphorylated proteins in the actin complex. No change in the distribution of phosphoserine or phosphothreonine was observed. Half maximal calcium activation of the ATPase activity of reconstituted human skeletal actomyosin made with the [32P]phosphorylated human skeletal actin complex was the same as a reconstituted actomyosin made with an actin complex incubated in the absence of protein kinase at low or high Ca2+.  相似文献   

3.
Biotransformation of the phytoestrogen [14C]genistein was investigated in male and female rats by application of narrow-bore radio-HPLC-MSn (LCQ, Finnigan) to determine intermediates in metabolism. Urine contained five metabolites, Gm1–Gm5, 24 h after dosing by gavage with [14C]genistein (4 mg kg−1). Structural analysis following ESI revealed molecular ions [M+H]+ of m/z 447, 449, 273, and 271 for metabolites Gm2, Gm3, Gm5 and genistein, respectively and an [M–H] of m/z 349 for Gm4. Metabolite structure was deduced by evaluation of product ion spectra derived from unlabelled and [14C]-labelled ions and sensitivity to treatment with β-glucuronidase. These studies indicated identity of metabolites with genistein glucuronide (Gm2), dihydrogenistein glucuronide (Gm3), genistein sulphate (Gm4) and dihydrogenistein (Gm5). Detection of the β-glucuronidase resistant major metabolite Gm1 by ESI was poor and so was analysed by negative ion APCI; this revealed a deprotonated molecular ion of m/z 165 which had chromatographic and mass spectral properties consistent with authentic 4-hydroxyphenyl-2-propionic acid, a novel metabolite of genistein. In vitro metabolism studies with anaerobic caecal cultures derived from male and female rats revealed metabolism of genistein to Gm1 via Gm5 and an additional metabolite (Gm6) which was identified from product ion spectra as 6′-hydroxy-O-desmethylangolensin. Biotransformation of genistein by both isolated hepatocytes and precision-cut liver slices was limited to glucuronidation of parent compound. Commonality of genistein metabolites found in rats with those reported in man suggest similar pathways of biotransformation, primarily involving gut micro-flora.  相似文献   

4.
This study investigates the pro-oxidant activity of 3′- and 4′-O-methylquercetin, two relevant phase II metabolites of quercetin without a functional catechol moiety, which is generally thought to be important for the pro-oxidant activity of quercetin. Oxidation of 3′- and 4′-O-methylquercetin with horseradish peroxidase in the presence of glutathione yielded two major metabolites for each compound, identified as the 6- and 8-glutathionyl conjugates of 3′- and 4′-O-methylquercetin. Thus, catechol-O-methylation of quercetin does not eliminate its pro-oxidant chemistry. Furthermore, the formation of these A-ring glutathione conjugates of 3′- and 4′-O-methylquercetin indicates that quercetin o-quinone may not be an intermediate in the formation of covalent quercetin adducts with glutathione, protein and/or DNA. In additional studies, it was demonstrated that covalent DNA adduct formation by a mixture of [4-14C]-3′- and 4′-O-methylquercetin in HepG2 cells amounted to only 42% of the level of covalent adducts formed by a similar amount of [4-14C]-quercetin. Altogether, these results reveal the effect of methylation of the catechol moiety of quercetin on its pro-oxidant behavior. Methylation of quercetin does not eliminate but considerably attenuates the cellular implications of the pro-oxidant activity of quercetin, which might add to the mechanisms underlying the apparent lack of in vivo carcinogenicity of this genotoxic compound. The paper also presents a new mechanism for the pro-oxidant chemistry of quercetin, eliminating the requirement for formation of an o-quinone, and explaining why methylation of the catechol moiety does not fully abolish formation of reactive DNA binding metabolites.  相似文献   

5.
The antibiotic drug, netropsin, was complexed with the DNA oligonucleotide duplex [d(GGTATACC)]2 to explore the effects of ligand binding on the 13C NMR chemical shifts of the DNA base and sugar carbons. The binding mode of netrospin to TA-rich tracts of DNA has been well documented and served as an attractive model system. For the base carbons, four large changes in resonance chemical shifts were observed upon complex formation: −0.64 ppm for carbon 4 of either Ado4 or Ado6, 1.36 ppm for carbon 2 of Thd5, 1.33 ppm for carbon 5 of Thd5 and 0.94 for carbon 6 of Thd5. AdoC4 is covalently bonded to a heteroatom that is hydrogen bonded to netropsin; this relatively large deshielding is consistent with the known hydrogen bond formed at AdoN3. The three large shielding increases are consistent with hydrogen bonds to water in the minor groove being disrupted upon netropsin binding. For the DNA sugar resonances, large changes in chemical shifts were observed upon netropsin complexation. The 2′, 3′ and 5′ 13C resonances of Thd3 and Thd5 were shielded whereas those of Ado4 and Ado6 were deshielded; the 13C resonances of 1′ and 4′ could not be assigned. These changes are consistent with alteration of the dynamic pseudorotational states occupied by the DNA sugars. A significant alteration in the pseudorotational states of Ado4 or Ado6 must occur as suggested by the large change in chemical shift of −1.65 ppm of the C3′ carbon. In conclusion, 13C NMR may serve as a practical tool for analyzing structural changes in DNA-ligand complexes.  相似文献   

6.
A number of highly purified polychlorinated biphenyl (PCB) isomers and congeners were synthesized and administered to male Wistar rats at dosage levels of 30 and 150 μmol · kg−1. The effects of this in vivo treatment on the drug-metabolizing enzymes were determined by measuring the microsomal benzo[a]pyrene (B[a]P) hydroxylase, dimethylaminoantipyrine (DMAP) N-demethylase and NADPH-cytochrome c reductase enzyme activities, the cytochrome b5 content and the relative peak intensities and spectral shifts of the reduced microsomal cytochrome P-450: CO and ethylisocyanide (EIC) binding difference spectra. The results were compared to the effects of administering phenobarbitone (PB), 3-methylcholanthrene (MC) and PB plus MC (coadministered) to the test animals. The synthetic PCB congeners used in this study included 3,4,4′,5-tetrachlorobiphenyl (TCBP-1), 2,3′,4,4′-tetrachlorobiphenyl (TCBP-2), 2,3′,4,4′,5′-pentachlorobiphenyl (PCBP-1), 2,3,4,4′,5-pentachlorobiphenyl (PCBP-2), 2,3,3′,4,4′,5-hexachlorobiphenyl (HCBP-1), 2,3,3′,4′,5,6-hexachlorobiphenyl (HCBP-2), 2,3,3′,5,5′,6-hexachlorobiphenyl (HCBP-3), 2,2′,3,5,5′,6-hexachlorobiphenyl (HCBP-4) and 2,3,3′,4,5,5′-hexachlorobiphenyl (HCBP-5) and were used to reappraise the structure-activity rules for PCBs as hepatic microsomal enzyme inducers. The results suggested that (a) PCBs which induce MC or mixed-type activity must be substituted at both para positions, at least two meta positions but not necessarily on the same phenyl ring and can also contain one ortho chloro substituent; (b) due to the considerable structural diversity of the PB-type inducers the rules for induction of this activity by PCB congeners are not readily defined.  相似文献   

7.
Purified synaptic vesicles were isolated from hog cerebral cortex by a rapid procedure consisting of homogenization of cerebral cortex slices in iso-osmotic sucrose, differential centrifugation and sucrose density-gradient centrifugation. The purity of the vesicles was evaluated both biochemically and morphologically. The vesicles contained high amounts of γ-aminobutyrate (GABA) and acetylcholine at specific concentrations of 390 nmol/mg protein and 7.2 nmol/mg protein respectively.

Glutamate decarboxylase, the enzyme which catalyses GABA formation, binds to the synaptic vesicles in a calcium-dependent manner. The percentage of glutamate decarboxylase bound to the vesicles increases from about 5% without calcium, reaching a plateau of about 60% at 4 mM Ca2+. Magnesium in concentrations 0.2–10 mM has no significant effect on glutamate decarboxylase binding. Also in phospholipid vesicles (small unilamellar phosphatidylserine-phosphatidylcholine. 2:1 liposomes) Ca2+, but not Mg2+, induced the binding of glutamate decarboxylase, reaching a plateau of 50% at 2 mM Ca2+. Both in synaptic vesicles and in phospholipid vesicles the calcium-dependent glutamate decarboxylase binding seems to be specific, and not caused by unspecific association of proteins, since the specific binding (bound enzyme activity/mg bound protein) increases 3-fold from 0 to 4 mM Ca2+.

The functional role of this binding was studied in GAD containing vesicles by measuring the relationship between the accumulation of [3H]GABA, newly synthetized from [3H]glutamate, and the uptake of added [14C]GABA. No significant uptake of [14C]GABA was found under the experimental conditions used, whereas large amounts of [3H]GABA were found within the vesicles. It appears that the [3H]GABA accumulation process is functionally linked to [3H]GABA synthesis and is mediated by the membrane-bound glutamate decarboxylase. This synthesis-coupled uptake of GABA into synaptic vesicles possibly serves to bring about a plasticity effect in previously stimulated GABAergic nerve endings.  相似文献   


8.
G. Lauquin  P.V. Vignais 《BBA》1973,305(3):534-556
1. Optimal test conditions for adenine nucleotide translocation in Candida utilis mitochondria are a standard medium, consisting of 0.63 M mannitol, 2 mM EDTA (or ethylene glycol tetraacetic acid, EGTA), 10 mM morpholinopropane sulfonic acid (pH 6.8), and a temperature of 0 °C.

2. Adenine nucleotide translocation in C. utilis mitochondria is an exchange-diffusion process. The whole pool of internal adenine nucleotides is exchangeable, ADP being the most readily exchangeable nucleotide. The rate of mitochondrial ADP exchange, but not the Km value, depends on growth conditions. At 0 °C, the rate is about 3 to 4 nmoles ADP/min per mg protein for mitochondria obtained from yeast grown in the presence of 1.5% glucose; it rises to 11.5 nmoles when glucose is replaced by 3% ethanol in the growth medium. The Km value for ADP is 2 μM. The Q10 is about 2 between 0 and 20 °C. Among other exchangeable adenine nucleotides are ATP, dADP and the methylene and the hypophosphate analogues of ADP. Unlike mammalian mitochondria, C. utilis mitochondria are able to transport external UDP by a carboxyatractyloside-sensitive process.

3. Under conditions of oxidative phosphorylation (phosphate and substrate present in an aerated medium), added ADP is exchanged with internal ATP. A higher ATP/ADP ratio was found in the extramitochondrial space than in the intramito-chondrial space. The difference between the calculated phosphate potentials in the two spaces was 0.9–1.7 kcal/mole.

4. Atractyloside, carboxyatractyloside, bongkrekic acid and palmityl-CoA inhibit mitochondrial adenine nucleotide translocation in C. utilis as they do in mammalian mitochondria, but 2 to 4 times less efficiently. The inhibition due to atractyloside or palmityl-CoA is competitive with respect to ADP whereas that due to bongkrekic acid and carboxyatractyloside is non-competitive. Carboxyatractyloside and atractyloside inhibitions are additive. The apparent Kd for the binding of [35S]-carboxyatractyloside and [14C]bongkrekic acid is 10–15 nM and the concentration of sites 0.4–0.6 nmole/mg protein in both cases. [35S]Carboxyatractyloside binding is competitively displaced by atractyloside and vice versa.

5. Binding of [14C]ADP has been carried out with mitochondria depleted of their endogenous adenine nucleotides by incubation with phosphate and Mg2+ at 20 °C. The amount of bound [14C]ADP which is atractyloside removable is 0.08–0.16 nmole/mg protein.

6. The rate of ADP transport is quite different in mitochondria isolated from C. utilis, according to whether it is grown on glucose, or on ethanol or in the presence of chloramphenicol; for instance, it decreases by 10 times when 3% ethanol in the growth medium is replaced by 10% glucose and by 5 times when chloramphenicol is added to the medium. These variations are accompanied by parallel variations in cytochrome aa3. The number of atractyloside-sensitive ADP binding sites is not modified by the above conditions of culture, nor the number of [35S]carboxyatractyloside binding sites. The affinity for ADP is apparently not significantly modified, nor the size of the endogenous adenine nucleotide pool. In contrast to glucose repression or chloramphenicol inhibition, semi-anaerobiosis in C. utilis lowers significantly the mitochondrial binding capacity for carboxyatractyloside. Strict anaerobiosis in S. cerevisiae results in a practical loss of the cytochrome oxidase activity, and also of the carboxyatractyloside and ADP binding capacity. Transition from anaerobiosis to aerobiosis restores the cytochrome oxidase activity and the ADP and carboxyatractyloside binding capacities.  相似文献   


9.
In neuroblastoma × glioma hybrid cells (NG 108-15) labelled with [32P]-trisodium phosphate, [3H]-inositol and [14C]-arachidonic acid, bradykinin stimulated the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) while it had no effect on the release of [14C]-arachidonic acid (AA). The effect on PIP, was time- and dose-dependent with a maximal effect on [3H]-inositol- and [32P]-labelled cells after 10–30 s of stimulation with 10−6 M bradykinin. However, the hydrolysis of [14C]-AA labelled PIP2 was delayed compared to the effect on [3H]- and [14C]-PIP2 and was not detectable until after 60 s of stimulation. Bradykinin stimulation resulted in an increased formation of [3H]-inositol phosphates (IP) and [32P]- and [14P]- and [14C]-phosphatidic acid (PA) but the time course for PA formation did not allow the time-course for PIP2 hydrolysis. A reduced labelling of [23P]- and [14C]-phosphatidylcholine was also found in stimulated cells suggesting that PA may derive from other sources than PIP2. In conclusion, our results indicate that bradykinin activates phospholipase C, but not phospholipase A2, in NG 108-15 cells.  相似文献   

10.
1,25-Dihydroxyvitamin D3, an endogenous ligand with the highest affinity for the vitamin D receptor (VDR), was labeled with 11C for use in biological experiments. The radionuclide was incorporated via the reaction of [11C]methyllithium on a methyl ketone precursor in tetrahydrofuran at −10 °C. Deprotection of the labeled intermediate yielded 2.5–3 GBq [26,27-11C]1,25-dihydroxyvitamin D3 [11C-1,25(OH)2 D3] with specific radioactivity averaging 100 GBq/μmol at the end of synthesis and HPLC purification. The entire process took 48 min from the end of radionuclide production. In vitro binding experiments in rachitic chick purified VDR demonstrated the high affinity binding of this novel tracer. Thus; 11C-1,25(OH)2 D3 is available for in vivo distribution studies and may be suitable for the positron emission tomography (PET) determination of VDR levels and occupancy in animals and humans.  相似文献   

11.
Azido-triazinone (3-dimethylamino-4-methyl-6-(3′-azidophenyl)-1,2,4-triazin-5-one) was found to be an efficient inhibitor of Photosystem II electron transport. This compound has an I50 value of 69 nM (extrapolated to zero chlorophyll concentration), a high-affinity binding constant of 12.6 nM, and a number of binding sites of 1.9 nmol/mg chlorophyll. This corresponds to 550–580 molecules of chlorophyll per bound inhibitor; i.e., one molecule inhibitor per electron transport chain. In isolated spinach thylakoids, [14C]azido-triazinone upon ultraviolet illumination covalently binds almost exclusively to a 34 kDa protein. Covalent binding is prevented in the presence of other Photosystem II inhibitors. The protein labeled by azido-triazinone is identical to the 34 kDa herbicide-binding protein which is tagged by another photoaffinity label azido-atrazine (2-azido-4-(ethylamino)-6-(isopropylamino)-s-triazine).  相似文献   

12.
R.D. Myers  T.F. Lee   《Peptides》1983,4(6):955-961
The functional effect of neurotensin on the kinetics of dopamine (DA) release in the substantia nigra of the freely moving rat was investigated. After guide tubes for push-pull perfusion were implanted stereotaxically just above the substantia nigra, endogenous stores of DA in this structure were labelled by micro-injection of 0.02–0.05 μCi of [14C]-DA. Then an artificial cerebrospinal fluid (CSF) was perfused within the site at a rate of 20 μl/min at successive 5 min intervals. Neurotensin added to the CSF perfusate in concentrations of 0.05–0.1 μg/μl evoked an immediate, Ca++ dependent release of DA from sites directly within the substantia nigra or a delayed efflux when the peptide was perfused at the edge of this structure. Neurotensin failed to affect the pattern of release of this monoamine at sites which were not within the substantia nigra. Further, the body temperature of the rat also was not altered by neurotensin at any of the sites of perfusions. A relatively inactive analogue of the peptide, [D-Arg]9 neurotensin, was essentially without effect on DA activity. In double isotope experiments in which the substantia nigra of the rat was labelled with both [3H]-5-HT and [14C]-DA, the perfusion with neurotensin failed to affect 5-HT efflux while the release of DA was enhanced. Chromatographic analysis of the metabolites of DA in samples of push-pull perfusates revealed that neurotensin enhanced significantly the level of DOPAC and HVA. Overall, these results demonstrate that in the unrestrained rat neurotensin acts selectively within the substantia nigra to alter the presynaptic, Ca++ dependent release of DA. It is suggested that the mechanism by which the tri-decapeptide functions within this brainstem structure is through its modulation of nigral dopaminergic neurons.  相似文献   

13.
Dextran was synthesized using dextransucrase from Streptococus sanguis 10558 and (F)-[14C]sucrose as substrate to test the possibility that sucrose may be the initial acceptor for glucose. If sucrose is the initial acceptor, then dextran chains should have [14C] fructose in a terminal ‘sucrose’ linkage which can be cleaved under mild conditions. Although incorporation of [14C]fructose into dextran was observed, the label was not released by mild hydrolysis, indicating that sucrose is not the initiator for dextran synthesis. Incorporation of [14C]fructose into dextran might represent its ability to act as an acceptor, as suggested by the isolation of leucrose as a by-product in the reaction.  相似文献   

14.
Vesamicol [2-(4-phenylpiperidino)cyclohexanol, formerly AH5183] at a concentration of 10 μM reduced by 16–20% the amount of vesicle-bound ACh in intact pieces of Torpedo electric organ (isolated prisms). When [14C]acetate was applied to prisms in the presence of 10 μM vesamicol, vesicular translocation of newly synthesized [14C]ACh was inhibited by 40%. During short trains of field shocks given at 10 Hz to the tissue, vesamicol inhibited by 93% the release of [14C]ACh, but left the release of prestored ACh unaltered. In spite of these alterations, 10 μM vesamicol did not impair nerve-electroplaque transmission, even after prolonged electrical stimulation and during a recovery period. It is concluded that in the Torpedo electric organ the actions of vesamicol on ACh metabolism have apparently little or no effect on the efficiency of synaptic transmission.  相似文献   

15.
Presynaptic modulation by opioids of electrically-evoked neurotransmitter release from superfused rat amygdala slices prelabelled with [3H]noradrenaline (NA) and [14C]choline was examined. Both [3H]NA and [14C]acetylcholine release were strongly inhibited by morphine, the mixed δ/μ-receptor agonist [ -Ala2, -Leu5]enkephalin (DADLE) and the highly selective μ-agonist [ -Ala2, MePhe4, Gly-ol5]enkephalin (DAMGO), whereas the highly selective δ-agonist [ -Pen2, -Pen5]enkephalin and the κ-agonist bremazocine were without effect. The inhibitory effects were potently antagonized by naloxone but not by the selective δ-receptor antagonist fentanylisothiocyanate. When the selective uptake inhibitor desipramine was used to prevent uptake of [3H]NA into noradrenergic nerve terminals, but sparing the uptake into dopaminergic nerve terminals, the electrically evoked release of tritium was strongly inhibited by bremazocine but not by DADLE or DAMGO.

The data indicate, that in the amygdala transmitter release from dopaminergic nerve fibres is inhibited only via activation of κ-receptors, whereas transmitter release from noradrenergic and cholinergic nerve fibers is subjected to inhibition by opioids via activation of μ-receptors only. Regional differences and similarities of modulation of neurotransmitter release by opioids in the rat brain are briefly discussed.  相似文献   


16.
Shigeru Itoh  Mitsuo Nishimura 《BBA》1977,460(3):381-392
Changes in the rates of dark oxidation and reduction of the primary electron acceptor of System II by added oxidant and reductant were investigated by measuring the induction of chlorophyll fluorescence under moderate actinic light in 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea-inhibited chloroplasts at pH values between 3.6 and 9.5. It was found that:

1. (1) The rate of dark oxidation of photoreduced primary acceptor was very slow at all the pH values tested without added electron acceptor.

2. (2) The rate was accelerated by the addition of ferricyanide in the whole pH range. It was dependent approximately on the 0.8th power of the ferricyanide concentration.

3. (3) The rate constant for the oxidation of the primary acceptor by ferricyanide was pH-dependent and became high at low pH. The value at pH 3.6 was more than 100 times that at pH 7.8.

4. (4) The pH-dependent change in the rate constant was almost reversible when the chloroplasts were suspended at the original pH after a large pH change (acid treatment).

5. (5) An addition of carbonylcyanide m-chlorophenylhydrazone or heavy metal chelators had little effect on the rate of dark oxidation of the primary acceptor by ferricyanide.

6. (6) The dark reduction of the primary acceptor by sodium dithionite also became faster at low pH.

From these results it is concluded that at low pH the primary acceptor of System II becomes accessible to the added hydrophilic reagents even in the presence of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea.  相似文献   


17.
Protein kinase A (PKA) is an important signal transduction target for drug development because it influences critical cellular processes implicated in neuropsychiatric illnesses such as major depressive disorder. The goal of the present study was to develop the first imaging agent for measuring the levels of PKA with positron emission tomography (PET). By rational derivatization of 5-isoquinoline sulfonamides, it was found that the introduction of a methyl group to the sulphonamidic nitrogen on the known PKA inhibitors N-(2-aminoethyl)isoquinoline-5-sulfonamide (H-9, 1) and N-(2-(4-bromocinnamylamino)ethyl)isoquinoline-5-sulfonamide (H-89, 2), (yielding N-(2-aminoethyl)-N-methyl-isoquinoline-5-sulfonamide (4) and N-(2-(4-bromocinnamylamino)ethyl)-N-methyl-isoquinoline-5-sulfonamide (5), respectively) does not appreciably reduce in vitro potency toward PKA. We have facilitated the synthesis of 4 by reacting isoquinoline-5-sulfonyl chloride with N-methylethylenediamine (20% yield). Several techniques were used to thoroughly characterize 4 including multi (1H, 13C and 15N) NMR spectroscopy and X-ray crystallography. Compound 4 and 1-(4-bromophenyl)-1-propen-3-yl bromide were reacted to produce 5 in 16% yield. Compound 2 was reacted with [11C]CH3I to prepare N-(2-(4-bromocinnamylamino) ethyl)-N-[11C]methyl-isoquinoline-5-sulfonamide ([11C]5), with a decay-corrected radiochemical yield of 32%, based on [11C]CO2. [11C]5 was produced with >98% radiochemical purity and 1130 mCi/μmol specific activity after 40 min (end of synthesis). Conscious rats were administered [11C] 5 and sacrificed at 5, 15, 30 and 60 min after injection. Radioactivity from all excised brain regions was <0.2%ID/g at all time points. The modest brain penetration of [11C]5 may limit its use for studying PKA in the central nervous system.  相似文献   

18.
Three new natural products, 3,8-dimethoxy-5,7-dihydroxy-3′,4′-methylenedioxyflavone, 3,6,8-trimethoxy-5,7-dihydroxy-3′,4′-methylenedioxyflavone and 3,6,8,3′,4′-pentamethoxy-5,7-dihydroxyflavone were isolated from Melicope coodeana syn. Euodia simplex (Rutaceae) along with 3,6,3′-trimethoxy-5,7,4′-trihydroxyflavone and 3,3′-dimethoxy-5,7,4′-trihydroxyflavone. The structural assignments are based on 1H and 13C NMR data, including discussion of the chemical shifts of C-2 in 3,5-dihydroxy- and 3-methoxy-5-hydroxyflavones. The presence of highly methoxylated and methylenedioxyflavones is characteristic of the genus Melicope, and the present findings support the recent transfer of Euodia simplex to Melicope.  相似文献   

19.
Claudia Kluge  Peter Dimroth   《FEBS letters》1994,340(3):245-248
Subunit c of the F1F0-ATPase from Propionigenium modestum was extracted from the particulate cell fraction with chloroform/methanol. The protein was further purified by carboxymethyl cellulose chromatography and anion exchange HPLC in the organic solvent. SDS-PAGE of the purified protein indicated a single stained protein band migrating as expected for the c-subunit. Incubation of isolated subunit c in chlorform/methanol or aqueous buffer containing dodecyl-β- -maltoside with [14C]dicyclohexylcarbodiimide (DCCD) resulted in the incorporation of radioactivity into the protein. The rate of this reaction depended on the external pH; it was significantly faster in the more acidic than in the alkaline pH range. In the presence of Na+ subunit c was partially protected from labeling with [14C]DCCD at pH 6.1 and at pH 7.5, whereas no protection was evident at pH 5.5. At pH 7.5, the rate of subunit c labeling by [14C]DCCD in the presence of 20 mM NaCl was about 50% lower than in the absence of Na+ ions. The isolated c-subunit therefore apparently retains in part the Na+ binding site which, when occupied, diminishes the reactivity of the protein towards DCCD.  相似文献   

20.
The relationships between pyruvate and derived citrate metabolism and acetylcholine (ACh) synthesis in synaptosomes were examined. In the presence of 30 mM KCl, 0.1 mM Ca2+ caused 31 and 63% inhibition of pyruvate utilization and citrate accumulation, respectively. Verapamil and EGTA (0.5 mM) brought about no change in pyruvate consumption but increased rate of citrate accumulation, and overcame inhibitory effect of Ca2+. The rates of citrate accumulation in the presence of verapamil or EGTA were three to six times, respectively, higher than those in the presence of Ca2+. (−) Hydroxycitrate increased rate of citrate accumulation under all experimental conditions. The value of this activation appeared to be stable (0.20–0.28 nmol/min/mg of protein) and independent of changes in the basic rate of citrate accumulation. Ca2+ caused no significant changes in [14C]ACh synthesis, but it inhibited 14CO2 production by synaptosomes. These activities were inhibited by verapamil by 33 and 60%, respectively. Ca2+ did not modify these effects of the drug. On the other hand, (−)hydroxycitrate resulted in 22 and 29% inhibition of [14C]ACh synthesis in Ca2+ free and Ca2+ supplemented medium, respectively. These data indicated that rates of acetyl-CoA synthesis in synaptoplasm, via ATP-citrate lyase and probably by another pathways are independent of Ca-evoked changes in pyruvate oxidation and citrate supply from intraterminal mitochondria. This property might play a significant role in maintenance of stable level of ACh in active cholinergic nerve endings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号