首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y P Loh 《FEBS letters》1988,238(1):142-146
In our previous studies, we have purified a unique, paired basic residue-specific, prohormone-converting enzyme from pituitary intermediate lobe secretory vesicles. This enzyme, an aspartyl protease, was shown to cleave the intermediate lobe prohormone, pro-opiomelanocortin (POMC), to adrenocorticotropin, beta-endorphin and a 16 kDa NH2-terminal glycopeptide, in vitro [(1985) J. Biol. Chem. 260, 7194-7205]. To provide some evidence that this enzyme plays a role in prohormone conversion in the intact cell, the ability of pepstatin A, an aspartyl protease inhibitor, to block POMC processing in the mouse intermediate pituitary was investigated. By the use of a radioactive pulse-chase paradigm, [3H]POMC processing was found to be inhibited by 36.4% in pepstatin A-treated intermediate lobes. This result is consistent with the inactivation of pro-opiomelanocortin-converting enzyme by pepstatin A in the intact pituitary and further supports a role of this enzyme in POMC processing in vivo.  相似文献   

2.
12-Lipoxygenase from rat basophilic leukemia cells was purified about 300-fold by protein-HPLC in a single run. Maximal 12-lipoxygenase activity was observed at pH 7.5, while the enzyme became almost inactive at pH 6 and 9. Although Ca2+ was not essential for 12-lipoxygenase activity, the partially purified enzyme was stimulated approx. 2-fold in the presence of 0.1-5.0 mM Ca2+. Contrary to 5-lipoxygenase from RBL-1 cells, 12-lipoxygenase was not inactivated by preincubation with Ca2+ for 1-10 min, nor was it stimulated by 0.1-10 mM ATP.  相似文献   

3.
Ca2(+)-ATPase activity was measured in electric organ synaptosomal homogenates and their derived presynaptic plasma membranes using a low ionic strength medium, low in Ca2+ and Mg2+, and devoid of K+. The enzyme activity showed a high apparent affinity for Ca2+ (KCa:0.5 microM) and was: (1) 5-fold stimulated by 120 nM calmodulin, (2) highly sensitive to LaCl3 inhibition, and (3) not affected by 20 mM NaN3 or 0.1 mM ouabain. The addition of Mg2+ promoted the disappearance of Ca2(+)-ATPase activity. Incubation of synaptosomal homogenates in the above-mentioned assay medium with [gamma -32P]ATP resulted in the appearance of a 140 kDa band as revealed by SDS-gel electrophoresis. Labeling of this band with 32P was inhibited by 1 mM EGTA or 10 mM NH2OH, indicating that the isotope incorporation required the presence of Ca2+ and the formation of an acyl-phosphate derivative. The results indicate that the Ca2(+)-ATPase activity from synaptosomal homogenates had characteristics corresponding to those of the enzyme that catalyzes an outward transport of Ca2+ in nerve terminals. Preincubation of synaptosomes in Ca2+ plus K+, a depolarizing procedure, induced a large and rapid decrease in the Ca2(+)-ATPase activity, possibly mediated via Ca2+ entry through voltage-gated Ca2+ channels. Furthermore, the muscarinic cholinergic agonist oxotremorine (at 15 microM concentration) did not significantly affect either the enzyme activity or the intensity of the Ca2(+)-dependent 32P incorporation into the 140 kDa band, suggesting that the enzyme is not coupled to muscarinic binding sites.  相似文献   

4.
Pro-opiomelanocortin (adrenocorticotropin/endorphin prohormone) is processed to yield active hormones by cleavages at paired basic amino acid residues. In this study, an enzyme that specifically cleaves at the paired basic residues of this prohormone has been purified from bovine pituitary intermediate lobe secretory vesicles, the intracellular processing site of proopiomelanocortin. This enzyme, named pro-opiomelanocortin converting enzyme, has been characterized as a glycoprotein of Mr approximately 70,000. It has an apparent isoelectric point between 3.5 and 4.0. The pH optimum of the pro-opiomelanocortin converting enzyme is between 4 and 5, but the enzyme is highly active at the intravesicular pH of 5.1-5.6. The enzyme specifically cleaved the Lys-Arg pairs of pro-opiomelanocortin to yield Mr = to 21,000-23,000 ACTH, beta-lipotropin, Mr 13,000 and 4,500 ACTH, beta-endorphin, and a Mr = 16,000 NH2-terminal glycopeptide, the products synthesized by the pituitary intermediate lobe in situ. NH2- and COOH-terminal analysis of the products indicated that the pro-opiomelanocortin converting enzyme cleaves the peptide bond either between the Lys and Arg or on the carboxyl side of the Arg at Lys-Arg pairs of pro-opiomelanocortin. The intracellular localization, pH optimum, and cleavage specificity of the enzyme suggest that it may function as a pro-opiomelanocortin processing enzyme in the pituitary intermediate lobe in vivo.  相似文献   

5.
Studies were carried out at pH 7.0 and gamma/2 0.15 before addition of CaCl2 or EDTA. Clotting time, tau, at 3.03 microM fibrinogen and 0.91 u/ml thrombin was determined for equilibrium systems. With added Ca2+, tau decreases, from tau 0 at 0 added Ca2+ (mean, 29.7 +/- 3 s), by approximately 3 s at 5 mM added Ca2+. With added EDTA, tau increases sigmoidally from tau 0 at 0 EDTA to a maximum (mean tau m = 142 +/- 23 s) at approximately 200 microM EDTA. tau then decreases slightly to a minimum at approximately 1.3 mM and finally increases to infinity at approximately 10 mM EDTA. Between 0 and 1.3 mM EDTA, effects on clotting time are completely reversed by adding Ca2+ and, after equilibration at 400 microM EDTA, tau is independent of EDTA concentration. Thus, up to 400 microM EDTA, effects on clotting time are attributed to decreasing fibrinogen bound Ca2+. Between 5 mM Ca2+ and 200 microM EDTA it is assumed that an equilibrium distribution of fibrinogen species having 3, 2, 1, or 0 bound calcium ions is established and that a clotting time is determined by the sum of products of species fractional abundance and pure species clotting time. Analysis indicates that pure species clotting times increase proportionately with decreasing Ca2+ binding, binding sites are nearly independent, and the microscopic association constant for the first bound Ca2+ is approximately 4.9 X 10(6) M-1. Effects of adding Ca2+ at times t1 after thrombin addition to systems initially equilibrated at 200 microM EDTA were determined. Analysis of the relation between tau and t1 indicates that as Ca2+ binding decreases, rate constants for release of B peptides decrease less than those for release of A peptides. As EDTA concentration is increased above 1.3 mM, inhibitory effects of EDTA and CaEDTA progressively increase.  相似文献   

6.
The ability of bovine intermediate lobe secretory vesicle membrane-associated enzyme(s) and purified, soluble paired basic residue-specific, pro-opiomelanocortin converting enzyme (Loh, Y.P., Parish, D. C., and Tuteja, R. (1985) J. Biol. Chem. 260, 7194-7205) to cleave bovine NH2-terminal pro-opiomelanocortin1-77 (N-POMC 1-77) was investigated. Purified pro-opiomelanocortin converting enzyme and an enzyme activity associated with the secretory vesicle membrane were shown to cleave bovine N-POMC1-77 to two major products: N-POMC1-49 and Lys-gamma 3-melanotropin (MSH), and one minor product, gamma 3-MSH. These products were identified by their retention times on high performance liquid chromatography, immunological characteristics, and for Lys-gamma 3-MSH, amino acid composition. The products generated indicate cleavage preferentially between Arg 49-Lys 50 of bN-POMC1-77 (where b indicates bovine), which is identical to the processing pattern found in the bovine intermediate lobe in situ. The membrane converting activity was shown to be stimulated by 5 mM Ca2+ and has a pH optimum of 4-5 and an inhibitor profile characteristic of an aspartic protease. This suggests that the membrane-associated enzyme involved is very similar or identical to the purified, soluble pro-opiomelanocortin converting enzyme, which has previously been reported to be an acidic, aspartic protease responsible for the initial steps of POMC processing. The results of this study lead to the proposal that the lack of processing of the Arg49-Lys50 site in POMC in the anterior lobe versus the intermediate lobe of the pituitary in vivo may be due to other regulatory mechanisms rather than invoking the existence in the intermediate lobe of another enzyme specific for this site, different from pro-opiomelanocortin converting enzyme.  相似文献   

7.
N-Acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CAMP-NeuAc synthetase) from rat liver catalyzes the formation of cytidine monophosphate N-acetylneuraminic acid from CTP and NeuAc. We have purified this enzyme to apparent homogeneity (241-fold) using gel filtration on Sephacryl S-200 and two types of affinity chromatographies (Reactive Brown-10 Agarose and Blue Sepharose CL-6B columns). The pure enzyme, whose amino acid composition and NH2-terminal amino acid sequence are also established, migrates as a single protein band on non-denaturing polyacrylamide gel electrophoresis. The molecular mass of the native enzyme, estimated by gel filtration, was 116 +/- 2 kDa whereas its Mr in sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 58 +/- 1 kDa. CMP-NeuAc synthetase requires Mg2+ for catalysis although this ion can be replaced by Mn2+, Ca2+, or Co2+. The optimal pH was 8.0 in the presence of 10 mM Mg2+ and 5 mM dithiothreitol. The apparent Km for CTP and NeuAc are 1.5 and 1.3 mM, respectively. The enzyme also converts N-glycolylneuraminic acid to its corresponding CMP-sialic acid (Km, 2.6 mM), whereas CMP-NeuAc, high CTP concentrations, and other nucleotides (CDP, CMP, ATP, UTP, GTP, and TTP) inhibited the enzyme to different extents.  相似文献   

8.
Stimulation of pyruvate dehydrogenase phosphatase activity by polyamines   总被引:6,自引:0,他引:6  
Pyruvate dehydrogenase phosphatase requires Mg2+ or Mn2+, and its activity in the presence of Mg2+ is markedly stimulated by Ca2+. At saturating Mg2+ and Ca2+ concentrations, the polyamines spermine, spermidine and putrescine stimulated the activity of pyruvate dehydrogenase phosphatase 1.5- to 3-fold. Spermine was the most active of the polyamines. At a physiological concentration of Mg2+ (1 mM) and saturating Ca2+ concentration, the stimulation by 0.5 mM spermine was 4- to 5-fold, and at 0.3 mM Mg2+, the stimulation was 20- to 30-fold. In the absence of Mg2+ or Ca2+, spermine had no effect. These results suggest that a polybasic factor may be involved in the regulation of pyruvate dehydrogenase phosphatase activity.  相似文献   

9.
Glyoxalase I catalyzing the conversion of methylglyoxal into S-lactoylglutathione in the presence of glutathione was purified approximately 1,400-fold with 2.9% activity yield from mold, Aspergillus niger. The enzyme consisted of a single polypeptide chain with a relative molecular weight of 36,000 on both SDS-polyacrylamide gel electrophoresis and Sephadex G-150 gel filtration. The enzyme was most active at pH 7.0, 35-37 degrees C. Among the various aldehydes tested, the enzyme was active on methylglyoxal and 4,5-dioxovalerate with Km values of 1.25 and 0.87 mM, respectively. The activity of the enzyme was completely inhibited by Zn2+ at 0.5 mM. An equimolar amount of EDTA (0.5 mM) protected the enzyme from inactivation by Zn2+. EDTA competitively (K1 = 1.3 mM) inhibited the activity of the enzyme. Fe2+ was a potent activator for the enzyme, the activation being approximately 2.4-fold at 0.5 mM.  相似文献   

10.
A plasma membrane fraction was isolated from lysates of Bacillus Calmette-Guérin-induced alveolar macrophages of rabbit. On the basis of morphological and biochemical criteria this fraction appeared to be minimally contaminated by other subcellular organelles. Concentrations of Ca2+, but not of Mg2+, from 6.10(-8) to 1.10(-5) M markedly stimulated the basal ATPase (EC 3.6.1.3) activity of the plasma membrane, with an apparent Km (Ca2+) of 1.10(-6) M. The specific activity of the Ca2+-ATPase assayed at pCa = 5.5 was enriched about 8-fold in the plasma membrane fraction over the macrophage lysate. In contrast, the specific activity of the K+, EDTA-activated ATPase, associated to macrophage myosin, increased only 1.3-fold. Oligomycin and -SH group reagents exerted no influence on the Ca2+-ATPase activity, which was on the contrary inhibited by detergents such as Triton X-100 and deoxycholate. The activity of the Ca2+-ATPase was maximal at pH 7, and was decreased by 50 mM Na+ and 5 mM K+. On the contrary, the activity of Mg2+-ATPase, also present in the plasma membrane fraction, had a peak at about pH 7.8, and was stimulated by Na+ plus K+. On account of its properties, it is suggested that the Ca2+-ATPase is a component of the plasma membrane of the alveolar macrophage, and that its function may be that of participating in the maintenance of low free Ca2+ concentrations in the macrophage cytosol.  相似文献   

11.
The (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2(+)-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5 mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2(+)-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2(+)- and Mg2(+)-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

12.
Sodium and potassium ion-transport adenosine triphosphatase from dog kidney was incubated with 0.4-2 mM Ca2+ at 23 degrees C for more than 2 min in the absence of monovalent inorganic cations, cooled to 0 degrees C, and phosphorylated from 1 mM Pi with 2.4 mM MgCl2. The resultant phosphoenzyme resembled that obtained by incubating the enzyme with K+ in place of Ca2+ in six respects. It was concluded that Ca2+ can occupy the monovalent cation-binding center for K+. The rate constant for release of Ca2+ from the dephosphoenzyme at 0 degrees C was 0.17 s-1. The rate of release from the phosphoenzyme was at least 7-fold slower. Phosphorylation stabilized the binding of Ca2+ to the enzyme in contrast to its destabilization of the corresponding K X enzyme complex. K-sensitive phosphoenzyme did not respond to free Ca2+. Thus Ca2+ was not easily accepted by nor released from the phosphoenzyme and would not be an effective substrate for transport. A selective barrier against Ca2+ between the monovalent cation binding center and the extracellular solution is proposed. Release of calcium from the dephosphoenzyme yielded a conformation that was not phosphorylated from Pi. The enzyme changed the conformation of its center for phosphorylation before or at the same time that it changed the conformation of its center for ion transport.  相似文献   

13.
A thiocyanate hydrolase that catalyzes the first step in thiocyanate degradation was purified to homogeneity from Thiobacillus thioparus, an obligate chemolithotrophic eubacterium metabolizing thiocyanate to sulfate as an energy source. The thiocyanate hydrolase was purified 52-fold by steps involving ammonium sulfate precipitation, DEAE-Sephacel column chromatography, and hydroxylapatite column chromatography. The enzyme hydrolyzed 1 mol of thiocyanate to form 1 mol of carbonyl sulfide and 1 mol of ammonia as follows: SCN- + 2H2O----COS + NH3 + OH-. This is the first report describing the hydrolysis of thiocyanate to carbonyl sulfide by an enzyme. The enzyme had a molecular mass of 126 kDa and was composed of three different subunits: alpha (19 kDa), beta (23 kDa), and gamma (32 kDa). The enzyme exhibited optimal activities at pH 7.5-8.0 and at temperatures ranging from 30 to 40 degrees C. The Km value for thiocyanate was approximately 11 mM. Immunoblot analysis with polyclonal antibodies against the purified enzyme suggested that it was induced in T. thioparus cells when the cells were grown with thiocyanate.  相似文献   

14.
Membrane vesicles were prepared from Artemia nauplii (San Francisco Bay variety) 45 h after hydration of the dry cysts. Na+-loaded vesicles accumulated up to 10 nmol Ca2+/mg protein when diluted 50-fold into 160 mM KCl containing 15 microM CaCl2. Practically no accumulation of Ca2+ was observed if the vesicles were diluted into 160 mM NaCl instead of KCl, or if they were treated with monensin, a Na+ ionophore, for 30 s prior to addition of CaCl2 to the KCl medium. These observations indicate that the Artemia vesicles exhibit Na-Ca exchange activity. The velocity of Ca2+ accumulation by the vesicles in KCl was stimulated 2.6-fold by the K+ ionophore valinomycin, suggesting that the exchange system is electrogenic, with a stoichiometry greater than 2Na+ per Ca2+. Km,Ca and Vmax values were 15 microM and 7.5 nmol/mg protein.s, respectively. Exchange activity in the Artemia vesicles was inhibited by benzamil (IC50 approximately equal to 100 microM) and by quinacrine (IC50 approximately equal to 250 microM), agents that also inhibit exchange activity in cardiac sarcolemmal vesicles. Unlike cardiac vesicles, however, exchange activity in Artemia was not stimulated by limited proteolysis, redox reagents, or intravesicular Ca2+. This indicates that the two exchange systems are regulated by different mechanisms. Vesicles were prepared from Artemia at various times after hydration of the dry cysts and examined for exchange activity. Activity was first observed at approximately 10 h after hydration and increased to a maximal value by 30-40 h; hatching of the free swimming nauplii occurred at 18-24 h. The results suggest that hatching Artemia nauplii might be a particularly rich source of mRNA coding for the Na+-Ca2+ exchange carrier.  相似文献   

15.
Peptide hormones are synthesized from larger precursors by cleavages at paired basic residues. We have isolated a pro-hormone converting enzyme from bovine neural and intermediate lobe secretory vesicles that cleaves pro-vasopressin and pro-opiomelanocortin at Lys-Arg residues to yield vasopressin, and adrenocorticotropin/endorphin-related peptides, respectively. The enzyme from both lobes is an aspartyl protease of approximately 70,000 Da, is a glycoprotein and has an optimum pH range of 4.0-5.0. Present within the same secretory vesicles is an aminopeptidase B-like enzyme which is a metalloprotease that is inhibited by Co2+ and Zn2+. This enzyme may play a role in trimming off the N-terminal extended basic residues from peptides liberated by the pro-hormone converting enzyme.  相似文献   

16.
Phosphorylase kinase has been purified from white and red chicken skeletal muscle to near homogeneity, as judged by sodium dodecyl sulphate (SDS) gel electrophoresis. The molecular mass of the native enzyme, estimated by chromatography on Sepharose 4B, is similar to that of rabbit skeletal muscle phosphorylase kinase, i.e. 1320 kDa. The purified enzyme both from white and red muscles showed four subunits upon polyacrylamide gel electrophoresis in the presence of SDS, corresponding to alpha', beta, gamma' and delta with molecular masses of 140 kDa, 129 kDa, 44 kDa and 17 kDa respectively. Based on the molecular mass of 1320 kDa for the native enzyme and on the molar ratio of subunits as estimated from densitometric tracings of the polyacrylamide gels, a subunit formula (alpha' beta gamma' delta)4 has been proposed. The antiserum against the mixture of the alpha' and beta subunits of chicken phosphorylase kinase gave a single precipitin line with the chicken enzyme but did not cross-react with the rabbit skeletal muscle phosphorylase kinase. The pH 6.8/8.2 activity ratio of phosphorylase kinase from chicken skeletal muscle varied from 0.3 to 0.5 for different preparations of the enzyme. Chicken phosphorylase kinase could utilize rabbit phosphorylase b as a substrate with an apparent Km value of 0.02 mM at pH 8.2. The apparent V (18 mumol min-1 mg-1) and Km values for ATP at pH 8.2 (0.20 mM) were of the same order of magnitude as that of the purified rabbit phosphorylase kinase b. The activity of chicken phosphorylase kinase was largely dependent on Ca2+. The chicken enzyme was activated 2-4-fold by calmodulin and troponin C, with concentrations for half-maximal activation of 2 nM and 0.1 microM respectively. Phosphorylation with the catalytic subunit of cAMP-dependent protein kinase (up to 2 mol 32P/mol alpha beta gamma delta monomer) and autophosphorylation (up to 8 mol 32P/mol alpha beta gamma delta monomer) increased the activity 1.5-fold and 2-fold respectively. Limited tryptic and chymotryptic hydrolysis of chicken phosphorylase kinase stimulated its activity 2-fold. Electrophoretic analysis of the products of proteolytic attack suggests some differences in the structure of the rabbit and chicken gamma subunits and some similarities in the structure of the rabbit red muscle and chicken alpha'.  相似文献   

17.
In TTX-sensitive nerve and skeletal muscle Na+ channels, selective modification of external carboxyl groups with trimethyloxonium (TMO) or water-soluble carbodiimide (WSC) prevents voltage-dependent Ca2+ block, reduces unitary conductance, and decreases guanidinium toxin affinity. In the case of TMO, it has been suggested that all three effects result from modification of a single carboxyl group, which causes a positive shift in the channel's surface potential. We studied the effect of these reagents on Ca2+ block of adult rabbit ventricular Na+ channels in cell-attached patches. In unmodified channels, unitary conductance (gamma Na) was 18.6 +/- 0.9 pS with 280 mM Na+ and 2 mM Ca2+ in the pipette and was reduced to 5.2 +/- 0.8 pS by 10 mM Ca2+. In contrast to TTX-sensitive Na+ channels, Ca2+ block of cardiac Na+ channels was not prevented by TMO; after TMO pretreatment, gamma Na was 6.1 +/- 1.0 pS in 10 mM Ca2+. Nevertheless, TMO altered cardiac Na+ channel properties. In 2 mM Ca2+, TMO-treated patches exhibited up to three discrete gamma Na levels: 15.3 +/- 1.7, 11.3 +/- 1.5, and 9.8 +/- 1.8 pS. Patch-to-patch variation in which levels were present and the absence of transitions between levels suggests that at least two sites were modified by TMO. An abbreviation of mean open time (MOT) accompanied each decrease in gamma Na. The effects on channel gating of elevating external Ca2+ differed from those of TMO pretreatment. Increasing pipette Ca2+ from 2 to 10 mM prolonged the MOT at potentials positive to approximately -35 mV by decreasing the open to inactivated (O-->I) transition rate constant. On the other hand, even in 10 mM Ca2+ TMO accelerated the O-->I transition rate constant without a change in its voltage dependence. Ensemble averages after TMO showed a shortening of the time to peak current and an acceleration of the rate of current decay. Channel modification with WSC resulted in analogous effects to those of TMO in failing to show relief from block by 10 mM Ca2+. Further, WSC caused a decrease in gamma Na and an abbreviation of MOT at all potentials tested. We conclude that a change in surface potential caused by a single carboxyl modification is inadequate to explain the effects of TMO and WSC in heart. Failure of TMO and WSC to prevent Ca2+ block of the cardiac Na+ channel is a new distinction among isoforms in the Na+ channel multigene family.  相似文献   

18.
Pro-opiomelanocortin, the common glycoprotein precursor to adrenocorticotropin and beta-lipotropin, is the most abundant protein synthesized in rat neurointermediate lobes. Dissected rat neurointermediate lobes were incubated in the presence of canavanine, an analog of arginine, to determine (a) whether canavanine could be incorporated into pro-opiomelanocortin molecules and (b) if incorporation occurs, whether there is any effect on the processing mechanism of the prohormone. Preincubation of rat neurointermediate lobes for 16 h in the presence of 10 mM canavanine results in the production of pro-opiomelanocortin molecules in which most, if not all, the arginine residues have been replaced by canavanine. Identification of canavanine-containing pro-opiomelanocortin forms was done by two-dimensional electrophoresis, tryptic and chymotryptic peptide mapping, as well as by analysis, on polyacrylamide gels in the presence of sodium dodecyl sulfate, of the fragments resulting from a partial digestion with chymotrypsin. During pulse-chase experiments, canavanine-containing pro-opiomelanocortin molecules were found to be processed at a much slower rate than the normal precursor forms: after a 2-h chase, conversion of approximately 25% of the analog-containing prophormone was observed compared to 83% of the nonanalog-containing precursors. Moreover, the small proportion of canavanine-containing precursor molecules which had undergone cleavage during the chase yielded atypical large molecular weight peptides. These results indicate that canavanine incorporation into neurointermediate lobe proteins considerably slows down the conversion of pro-opiomelanocortin into its different end products.  相似文献   

19.
A beta-glucosidase from Phoma sp. KCTC11825BP isolated from rotten mandarin peel was purified 8.5-fold with a specific activity of 84.5 U/mg protein. The purified enzyme had a molecular mass of 440 kDa with a subunit of 110 kDa. The partial amino acid sequence of the purified beta-glucosidase evidenced high homology with the fungal beta- glucosidases belonging to glycosyl hydrolase family 3. Its optimal activity was detected at pH 4.5 and 60 degrees C, and the enzyme had a half-life of 53 h at 60 degrees C. The Km values for p-nitrophenyl-beta-D-glucopyranoside and cellobiose were 0.3 mM and 3.2 mM, respectively. The enzyme was competitively inhibited by both glucose (Ki=1.7 mM) and glucono-delta-lactone (Ki=0.1 mM) when pNPG was used as the substrate. Its activity was inhibited by 41% by 10 mM Cu2+ and stimulated by 20% by 10 mM Mg2+.  相似文献   

20.
We could show an ATPase in mitochondrial and microsomal fractions of sheep arteria carotis communis and arteria coronaria of cattle which can be stimulated by Ca2+ of Mg2+, respectively. The enzyme has a higher affinity for Ca2+ than for Mg2+. The maximum activity of the Mg(Ca)-ATPase was found at 2-4 mM Ca2+ or Mg2+, respectively. Higher concentrations of these ions inhibit the enzyme. Mn2+, Sr2+ and Co2+ can substitute Ca2+ in splitting of ATP by the ATPase of both fractions of ateria coronaria of cattle. The ions K+ and Na+, variation of temperature and pH and a variety of pharmacological active compounds has the same effect on the ATPase stimulated by Ca2+ or Mg2+. These findings prove that Ca2+ and Mg2+ act at the same site of the ATPase of the mitochondrial and microsomal fraction of vascular smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号