首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
RpoS, the master sigma factor during stationary phase and under a variety of stress conditions, is regulated at multiple levels, including regulated degradation. Degradation is dependent upon ClpXP and the RssB adaptor protein. H-NS, a nucleoid-associated protein, affects the regulated degradation of RpoS; in the absence of H-NS, RpoS is stable. The mechanisms involved in this regulation were not known. We have found that H-NS inhibits the expression of iraD and iraM, the genes coding for two antiadaptor proteins that stabilize RpoS when overexpressed. The regulation by H-NS of iraM is independent from the previously demonstrated regulation by the PhoP/PhoQ two-component system. Moreover, differences in the behavior of several hns alleles are explained by a role for StpA, an H-NS-like protein, in the regulation of RpoS stability. This finding parallels recent observations for a role of StpA in regulation of RpoS stability in Salmonella.  相似文献   

3.
4.
5.
6.
The starvation stress response of Salmonella typhimurium encompasses the genetic and physiologic changes that occur when this bacterium is starved for an essential nutrient such as phosphate (P), carbon (C), or nitrogen (N). The responses to the limitation of each of these nutrients involve both unique and overlapping sets of proteins important for starvation survival and virulence. The role of the alternative sigma factor RpoS in the regulation of the starvation survival loci, stiA, stiB, and stiC, has been characterized. RpoS (sigma S) was found to be required for the P, C, and N starvation induction of stiA and stiC. In contrast, RpoS was found to be required for the negative regulation of stiB during P and C starvation-induced stationary phase but not during logarithmic phase. This role was independent of the relA gene (previously found to be needed for stiB induction). The role of RpoS alone and in combination with one or more sti mutations in the starvation survival of the organism was also investigated. The results clearly demonstrate that RpoS is an integral component of the complex interconnected regulatory systems involved in S. typhimurium's response to nutrient deprivation. However, differential responses of various sti genes indicate that additional signals and regulatory proteins are also involved.  相似文献   

7.
The rpoS gene which encodes a stationary phase sigma factor has been identified and characterised from the rhizosphere-colonising plant growth-promoting Pseudomonas putida strain WCS358. The predicted protein sequence has extensive homologies with the RpoS proteins form other bacteria, in particular with the RpoS sigma factors of the fluorescent pseudomonads. A genomic transposon insertion in the rpoS gene was constructed, these mutants were analysed for their ability to produce siderophore (iron-transport agent) and the autoinducer quorum-sensing molecules called homoserine lactones (AHL). It was determined that RpoS was not involved in the regulation of siderophore and AHL production, synthesis of these molecules is important for gene expression at stationary phase. P. putida WCS358 produces at least three different AHL molecules.  相似文献   

8.
9.
10.
11.
12.
BpsIR, a LuxIR quorum-sensing homolog, is required for optimal expression of virulence and secretion of exoproducts in Burkholderia pseudomallei. Cell density-dependent expression of bpsI and bpsR, the positive regulation of bpsIR expression by BpsR, and the synthesis of N-octanoyl-homoserine lactone (C8HSL) by BpsI are described in this report.  相似文献   

13.
14.
15.
16.
AIMS: The aim of this work was to investigate the connection between oxidation-reduction (redox) potential and stationary phase induction of RpoS in Salmonella Typhimurium. METHODS AND RESULTS: A lux-based reporter was used to evaluate RpoS activity in S. Typhimurium pure cultures. During growth of S. Typhimurium, a drop in the redox potential of the growth medium occurred at the same time as RpoS induction and entry into stationary phase. An artificially induced decrease in redox potential earlier during growth reduced the time to RpoS induction and Salmonella entered the stationary phase prematurely. In contrast, under high redox conditions, Salmonella grew unaffected and entered the stationary growth phase as normal, although RpoS induction did not occur. As a consequence, stationary phase cells grown in the high redox environment were significantly more heat sensitive (P < 0.05) than those grown under normal conditions. CONCLUSIONS: This work suggests that redox potential can regulate RpoS levels in S. Typhimurium and can thus, control the expression of genes responsible for thermal resistance. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to manipulate RpoS induction and control stationary phase gene expression can have important implications in food safety. Early RpoS induction under low redox potential conditions can lead to enhanced resistance in low cell concentrations to inimical processes such as heat stress. Inhibition of RpoS induction would abolish stationary phase protective properties making cells more sensitive to common food control measures.  相似文献   

17.
18.
RpoS, an alternative sigma factor produced by many gram-negative bacteria, primarily controls genes that are expressed in stationary phase in response to nutrient deprivation. To test the idea that induction of RpoS in the exponential phase, when RpoS is not normally expressed, increases RpoS-dependent gene expression, we constructed a plasmid carrying the rpoS gene under the control of an IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible T7lac promoter. Northern and Western analyses revealed that levels of RpoS mRNA and protein, respectively, increased in response to the inducer IPTG. Assays of changes in RpoS-dependent functions (catalase activity and glycogen accumulation), confirmed that induced RpoS was functional in exponential phase and was sufficient for the expression of RpoS-dependent functions. Controlled expression of RpoS and RpoS-dependent genes by plasmid-encoded rpoS may thus offer a useful tool for the study of RpoS-dependent gene expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号