首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
One of the major components in the development of nanomedicines is the choice of the right biomaterial, which notably determines the subsequent biological responses. The popularity of carbon nanomaterials (CNMs) has been on the rise due to their numerous applications in the fields of drug delivery, bioimaging, tissue engineering, and biosensing. Owing to their considerably high surface area, multifunctional surface chemistry, and excellent optical activity, novel functionalized CNMs possess efficient drug-loading capacity, biocompatibility, and lack of immunogenicity. Over the past few decades, several advances have been made on the functionalization of CNMs to minimize their health concerns and enhance their biosafety. Recent evidence has also implied that CNMs can be functionalized with bioactive peptides, proteins, nucleic acids, and drugs to achieve composites with remarkably low toxicity and high pharmaceutical efficiency. This review focuses on the three main classes of CNMs, including fullerenes, graphenes, and carbon nanotubes, and their recent biomedical applications.  相似文献   

2.
Classical risk factors for cardiovascular and cerebrovascular diseases do not fully coincide with the prevalence of these conditions. Emerging evidences show that new factors may be predisposing for the development of ischemic events. It has been demonstrated that atherosclerosis has a strong inflammatory background; such state of chronic inflammation may be related to the presence of persistent infectious agent. Helicobacter pylori (H. pylori), among other microorganisms, has been extensively investigated for its possible role. Many molecular mechanisms have been hypothesized to explain its eventual action. Epidemiological studies do not exclude a correlation between the infection and cardiovascular and cerebrovascular diseases. Many confounding factors, however, make difficult a definitive evaluation of the huge number of data present in the literature. Moreover, various therapeutic studies have been attempted to show if antibiotic treatment improves prognosis in patients affected by ischemic heart disease. Still, none of these trials focused specifically on the effects of H. pylori eradication on the clinical progression of vascular lesions.  相似文献   

3.
Ebselen, an organoselenium compound, mimics glutathione peroxidase activity. It is a multifunctional compound, which catalyzes several essential reactions for the protection of cellular components from oxidative and free radical damage. Based on a number of in vitro and in vivo studies, various mechanisms are proposed to understand the biomedical actions of ebselen in health and diseases. It modulates metallo-proteins, enzymatic cofactors, gene expression, epigenetics, antioxidant defenses and immune systems. Owing to these properties, ebselen is currently under clinical trials for the prevention and treatment of various disorders such as cardiovascular diseases, arthritis, stroke, atherosclerosis, and cancer. A few ebselen-based pharmaceutical agents are under extensive investigation. As ebselen has been shown to have significant cellular toxicity, appropriate studies are needed to redesign the ebselen-based therapy for clinical trials. This review summarizes current understanding of the biochemical and molecular properties, and pharmacological applications of ebselen and future directions in this area of research.  相似文献   

4.
Carbon nanotubes (CNTs) have already been successfully implemented in various fields, and they are anticipated to have innovative applications in medical science. However, CNTs have asbestos-like properties, such as their nanoscale size and high aspect ratio (>100). Moreover, CNTs may persist in the body for a long time. These properties are thought to cause malignant mesothelioma and lung cancer. However, based on conventional toxicity assessment systems, the carcinogenicity of asbestos and CNTs is unclear. The reason for late countermeasures against asbestos is that reliable, long-term safety assessments have not yet been developed by toxicologists. Therefore, a new type of long-term safety assessment, different from the existing methods, is needed for carbon nanomaterials. Recently, we applied a proteomic approach to the safety assessment of carbon nanomaterials. In this review, we discuss the basic concept of our approach, the results, the problems, and the possibility of a long-term safety assessment for carbon nanomaterials using the toxicoproteomic approach.  相似文献   

5.
In traditional Chinese medicine, Ligusticum wallichii (Chuan Xiong) and its bioactive ingredient, tetramethylpyrazine (TMP), have been used to treat cardiovascular diseases and to relieve various neurological symptoms, such as those associated with ischemic injury. In the present study, we investigated whether ultrasound (US) exposure could enhance the protective effect of TMP against cerebral ischemia/reperfusion (I/R) injury. Glutamate-induced toxicity to pheochromocytoma (PC12) cells was used to model I/R injury. TMP was paired with US to examine whether this combination could alleviate glutamate-induced cytotoxicity. The administration of TMP effectively protected cells against glutamate-induced apoptosis, which could be further enhanced by US-mediated sonoporation. The anti-apoptotic effect of TMP was associated with the inhibition of oxidative stress and a change in the levels of apoptosis-related proteins, Bcl-2 and Bax. Furthermore, TMP reduced the expression of proinflammatory cytokines such as TNF-α and IL-8, which likely also contributes to its cytoprotective effects. Taken together, our findings suggest that ultrasound-enhanced TMP treatment might be a promising therapeutic strategy for ischemic stroke. Further study is required to optimize ultrasound treatment parameters.  相似文献   

6.
To overcome the biofouling challenge which faces membrane water treatment processed, the novel superhydrophobic carbon nanomaterials impregnated on/powder activated carbon (CNMs/PAC) was utilized to successfully design prepare an antimicrobial membrane. The research was conducted following a systematic statistical design of experiments technique considering various parameters of composite membrane fabrication. The impact of these parameters of composite membrane on Staphylococcus aureus growth was investigated. The bacteria growth was analyzed through spectrophotometer and SEM. The effect of CNMs' hydrophobicity on the bacterial colonies revealed a decrease in the abundance of bacterial colonies and an alteration in structure with increasing the hydrophobicity. The results revealed that the optimum preparative conditions for carbon loading CNMs/PAC was 363.04 mg with a polymer concentration of 22.64 g/100 g, and a casting knife thickness of 133.91 μm. These conditions have resulted in decreasing the number of bacteria colonies to about 7.56 CFU. Our results provided a strong evidence on the antibacterial effect and consequently on the antibiofouling potential of CNMs/PAC in membrane.  相似文献   

7.
Numerous association studies have been involved in studying the angiotensinogen (AGT) variants, AGT plasma levels and relations to cardiovascular diseases, such as hypertension, myocardial infarction, coronary heart disease. To investigate a role of AGT G(-6)A and M235T genetic variants for chronic heart failure (CHF) and advanced atherosclerosis (AA), a total of 240 patients with CHF and 200 patients with AA of the Czech origin were evaluated for the study. The study shows the role of polymorphism AGT G(-6)A in genetic background among advanced atherosclerosis patients and chronic heart failure patients (Pg=0.001). This difference was also observed in comparison of AA patients with subgroup of CHF with dilated cardiomyopathy (Pg=0.02; Pa=0.009), and ischemic heart disease (Pg=0.007). The greatest difference between triple-vessel disease and chronic heart failure groups was observed in frequency of GT haplotype (P<0.001) and GGMT associated genotype (P<0.001). Retrospectively, we found the same trend when the subgroups of CHF were compared to AA group (AA vs. IHD with CHF P<0.001; AA vs. DCM P<0.001). These results suggest AGT genetic variants as a risk factor for chronic heart failure compared to advanced atherosclerosis disease without heart failure, with a strong difference between IHD patients and chronic heart failure patients with ischemic heart disease, especially in haplotypes and associated genotypes.  相似文献   

8.
Genetically engineered mouse models and advances in molecular biotechnology have given extensive aid to experimental studies of cardiovascular mechanisms and dysfunction in pathological states such as atherosclerosis. Among the available animal models that have been developed to study atherosclerosis, the apolipoprotein E-deficient (apoE(-/-)) mouse is the most ideal genetically modified animal presently available. The apoE(-/-)mouse develops spontaneous severe hypercholesterolemia in a short-time and subsequently develops atherosclerotic lesions similar to those found in humans. Since its creation two decades ago, the apoE(-/-)mouse has greatly contributed to the understanding of atherosclerosis, but the consequences of hypercholesterolemia and atherosclerosis for the autonomic control of cardiovascular function in this mouse model have not been reviewed. In this article, we provide an overview of abnormalities of the parasympathetic and sympathetic nervous systems controlling heart rate and blood pressure and emphasize the dysfunction of the baroreflex control of cardiovascular function and how this dysfunction is influenced by nitric oxide, reactive oxygen species, aging and an atherogenic diet in the apoE(-/-)mouse.  相似文献   

9.
Transgenic rabbits as models for atherosclerosis research   总被引:4,自引:0,他引:4  
Several characteristics of the rabbit make it an excellent model for the study of lipoprotein metabolism and atherosclerosis. New Zealand White (NZW) rabbits have low plasma total cholesterol concentrations, high cholesteryl ester transfer protein activity, low hepatic lipase (HL) activity, and lack an analogue of human apolipoprotein (apo) A-II, providing a unique system in which to assess the effects of human transgenes on plasma lipoproteins and atherosclerosis susceptibility. Additionally, rabbit models of human lipoprotein disorders, such as the Watanabe Heritable Hyperlipidemic (WHHL) and St. Thomas' Hospital strains, models of familial hypercholesterolemia and familial combined hyperlipidemia, respectively, allow for the assessment of candidate genes for potential use in the treatment of dyslipoproteinemic patients. To date, transgenes for human apo(a), apoA-I, apoB, apoE2, apoE3, HL, and lecithin:cholesterol acyltransferase (LCAT), as well as for rabbit apolipoprotein B mRNA-editing enzyme catalytic poly-peptide 1 (APOBEC-1), have been expressed in NZW rabbits, whereas only those for human apoA-I and LCAT have been introduced into the WHHL background. All of these transgenes have been shown to have significant effects on plasma lipoprotein concentrations. In both NZW and WHHL rabbits, human apoA-I expression was associated with a significant reduction in the extent of aortic atherosclerosis, which was similarly the case for LCAT in rabbits having at least one functional LDL receptor allele. Conversely, expression of apoE2 in NZW rabbits caused increased susceptibility to atherosclerosis. These studies provide new insights into the mechanisms responsible for the development of atherosclerosis, emphasizing the strength of the rabbit model in cardiovascular disease research.  相似文献   

10.
Physiological role of ROCKs in the cardiovascular system   总被引:9,自引:0,他引:9  
Rho-associated kinases (ROCKs), the immediate downstream targets of RhoA, are ubiquitously expressed serine-threonine protein kinases that are involved in diverse cellular functions, including smooth muscle contraction, actin cytoskeleton organization, cell adhesion and motility, and gene expression. Recent studies have shown that ROCKs may play a pivotal role in cardiovascular diseases such as vasospastic angina, ischemic stroke, and heart failure. Indeed, inhibition of ROCKs by statins or other selective inhibitors leads to the upregulation and activation of endothelial nitric oxide synthase (eNOS) and reduction of vascular inflammation and atherosclerosis. Thus inhibition of ROCKs may contribute to some of the cholesterol-independent beneficial effects of statin therapy. Currently, two ROCK isoforms have been identified, ROCK1 and ROCK2. Because ROCK inhibitors are nonselective with respect to ROCK1 and ROCK2 and also, in some cases, may be nonspecific with respect to other ROCK-related kinases such as myristolated alanine-rich C kinase substrate (MARCKS), protein kinase A, and protein kinase C, the precise role of ROCKs in cardiovascular disease remains unknown. However, with the recent development of ROCK1- and ROCK2-knockout mice, further dissection of ROCK signaling pathways is now possible. Herein we review what is known about the physiological role of ROCKs in the cardiovascular system and speculate about how inhibition of ROCKs could provide cardiovascular benefits. Rho GTPase; Rho-kinase; vascular endothelium; contraction; actin cytoskeleton; nitric oxide; statins  相似文献   

11.
Patients with chronic kidney disease (CKD) have a substantially increased risk of cardiovascular disease (CVD) compared with the general population. The high prevalence of established traditional risk factors for atherosclerosis (diabetes, hypertension, dyslipidemia) in these patients undoubtedly contributes to the accelerated rate of vascular disease. In addition, several hypotheses have emerged to explain the high prevalence of CVD in patients with chronic renal failure. Growing evidence has been gathered over the last 15 years regarding the role of uremia-related risk factors such as inflammation and oxidant stress in the pathogenesis of atherosclerosis in subjects with renal failure. This paper will review current knowledge regarding the potential role of these non-traditional or uremia-related risk factors for atherosclerosis with special emphasis on prevalence, cardiac risk, and management in patients with CKD.  相似文献   

12.
Leukemia is a malignancy of the hematopoietic system, and as its pathogenesis has become better understood, three generations of tyrosine kinase inhibitors (TKIs) have been developed. Ponatinib is the third-generation breakpoint cluster region (BCR) and Abelson (ABL) TKI, which has been influential in the leukemia therapy for a decade. Moreover, ponatinib is a potent multi-target kinase inhibitor that acts on various kinases, such as KIT, RET, and Src, making it a promising treatment option for triple-negative breast cancer (TNBC), lung cancer, myeloproliferative syndrome, and other diseases. The drug's significant cardiovascular toxicity poses a significant challenge to its clinical use, requiring the development of strategies to minimize its toxicity and side effects. In this article, the pharmacokinetics, targets, therapeutic potential, toxicity and production mechanism of ponatinib will be reviewed. Furthermore, we will discuss methods to reduce the drug's toxicity, providing new avenues for research to improve its safety in clinical use.  相似文献   

13.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of arthritis and pain. However, their long-term use is limited by gastrointestinal (GI) side effects such as gastric ulcers. NSAIDs act by inhibiting an enzyme called cyclooxygenase. Cyclooxygenase (COX) catalyses the generation of prostaglandins from arachidonic acid. Two isoforms of the enzyme exist--COX-1 and COX-2--both of which are targets for NSAIDs. Although they are associated with GI toxicity, NSAIDs have important antithrombotic and anti-inflammatory effects. The GI injury has been attributed to COX-1 inhibition and the anti-inflammatory effects to COX-2 inhibition. As COX-2 is traditionally viewed as an inducible enzyme, selective inhibition of COX-2 by 'coxibs' (selective COX-2 inhibitors) has been employed to achieve anti-inflammatory and analgesic effects without GI side effects. However, recently there have been suggestions that chronic administration of coxibs might increase the risk of cardiovascular events, such as atherosclerosis, compared with traditional NSAIDs. In vascular disease, there is increased expression of both COX-1 and COX-2, resulting in enhanced prostaglandin generation. The specific role of COX-1 and COX-2 in vascular regulation is still unknown but such knowledge is essential for the effective use of coxibs. Although more evidence is pointing to selective COX-1 inhibition as a therapeutic measure in inflammatory atherosclerosis, there are some studies that suggest that inhibition of COX-2 might have a potential benefit on atherosclerosis.  相似文献   

14.
Supercritical point drying of gels is a common technique for the production of a specific category of nano-porous materials called aerogels. We have successfully prepared chitin aerogels by extracting the solvent from the alcogels (gels with an alcohol as the solvent) with carbon dioxide under supercritical conditions. The produced nano-porous materials exhibit the typical properties of aerogels such as high porosity, high surface area, and low density, which make them quite attractive for many applications. The use of chitin, however, is of particular interest for the production of aerogels not only for being abundant and cheap but also because it has important inherent properties such as biocompatibility, non toxicity, thermal and chemical stability. In this work we examine the influence of different parameters on the porosity characteristics of the aerogels, such as the drying conditions (temperature and pressure), the nature of the solvent, and the gel concentration. Since these aerogels collapse in liquid medium, we also investigated the possibility of their utilization as carbon aerogel precursors.  相似文献   

15.
Biomedical Applications of Polyhydroxyalkanoates   总被引:1,自引:0,他引:1  
Polyhydroxyalkanoates (PHA) are produced by a large number of microbes under stress conditions such as high carbon (C) availability and limitations of nutrients such as nitrogen, potassium, phosphorus, magnesium, and oxygen. Here, microbes store C as granules of PHAs—energy reservoir. PHAs have properties, which are quite similar to those of synthetic plastics. The unique properties, which make them desirable materials for biomedical applications is their biodegradability, biocompatibility, and non-toxicity. PHAs have been found suitable for various medical applications: biocontrol agents, drug carriers, biodegradable implants, tissue engineering, memory enhancers, and anticancer agents.  相似文献   

16.

Background and Purpose

Fatty acid binding protein 4 (FABP4) has been shown to play an important role in macrophage cholesterol trafficking and associated inflammation. To further elucidate the role of FABP4 in atherogenesis in humans, we examined the regulation of FABP4 in carotid atherosclerosis and ischemic stroke.

Methods

We examined plasma FABP4 levels in asymptomatic (n = 28) and symptomatic (n = 31) patients with carotid atherosclerosis, as well as in 202 subjects with acute ischemic stroke. In a subgroup of patients we also analysed the expression of FABP4 within the atherosclerotic lesion. In addition, we investigated the ability of different stimuli with relevance to atherosclerosis to regulate FABP4 expression in monocytes/macrophages.

Results

FABP4 levels were higher in patients with carotid atherosclerosis, both systemically and within the atherosclerotic lesion, with particular high mRNA levels in carotid plaques from patients with the most recent symptoms. Immunostaining of carotid plaques localized FABP4 to macrophages, while activated platelets and oxidized LDL were potent stimuli for FABP4 expression in monocytes/macrophages in vitro. When measured at the time of acute ischemic stroke, high plasma levels of FABP4 were significantly associated with total and cardiovascular mortality during follow-up, although we did not find that addition of FABP4 to the fully adjusted multivariate model had an effect on the prognostic discrimination for all-cause mortality as assessed by c-statistics.

Conclusions

FABP4 is linked to atherogenesis, plaque instability and adverse outcome in patients with carotid atherosclerosis and acute ischemic stroke.  相似文献   

17.
《Biotechnology advances》2017,35(2):105-134
Deep eutectic solvents (DESs) have been touted recently as potential alternatives to ionic liquids (ILs). Although they possess core characteristics that are similar to those of ILs (e.g., low volatility, non-flammability, low melting points, low vapor pressure, dipolar nature, chemical and thermal stability, high solubility, and tuneability), DESs are superior in terms of the availability of raw materials, the ease of storage and synthesis, and the low cost of their starting materials. As such, they have become the subject of intensive research in various sectors, notably the chemical, electrochemical, and biological sectors. To date, the applications of DESs have shown great promise, especially in the medical and biotechnological fields. In spite of these various achievements, the safety concern for these mixtures must be sufficiently addressed. Indeed, in order to exploit the vast array of opportunities that DESs offer to the biological industry, first, they must be established as safe mixtures. Hence, the biotechnological applications of DESs only can be implemented if they are proven to have negligible or low toxicity profiles. This review is the first of its kind, and it discusses two current aspects of DES-based research. First, it describes the properties of these mixtures with ample focus on their toxicity profiles. Second, it provides an overview of the breakthroughs that have occurred and the foreseeable prospects of the use of DESs in various biotechnological and biological applications.  相似文献   

18.
PPARalpha in atherosclerosis and inflammation   总被引:3,自引:0,他引:3  
  相似文献   

19.
人巨细胞病毒(human cytomegalovirus, HCMV)是β疱疹病毒家族成员,在人群中感染率极高,全球成人中血清阳性率可达40%~100%。研究表明,HCMV感染患者更易患心脑血管疾病。动脉粥样硬化(atherosclerosis,AS)是心血管系统疾病中危害健康的一种常见病。大量流行病学研究证明,在AS组织中可检测出较高的HCMV DNA和抗原、抗体,同时回顾性研究发现AS患者多有HCMV暴露因素,提示HCMV可能参与AS致病。本文就HCMV致AS的依据和机制进行综述, 为研究HCMV在AS病理过程中的作用提供全新视角。  相似文献   

20.
Angiotensin (Ang)‐converting enzyme (ACE) 2 cleaves Ang‐II into the vasodilator peptide Ang‐(1–7), thus acting as a pivotal element in balancing the local effects of these peptides. ACE2 has been identified in various tissues and is supposed to be a modulator of cardiovascular function. Decreases in ACE2 expression and activity have been reported in models of hypertension, heart failure, atherosclerosis, diabetic nephropathy and others. In addition, the expression level and/or activity are affected by other renin–angiotensin system components (e.g., ACE and AT1 receptors). Local inhibition or global deletion of brain ACE2 induces a reduction in baroreflex sensitivity. Moreover, ACE2‐null mice have been shown to exhibit either blood pressure or cardiac dysfunction phenotypes. On the other hand, over‐expression of ACE2 exerts protective effects in local tissues, including the brain. In this review, we will first summarize the major findings linking ACE2 to cardiovascular function in the periphery then focus on recent discoveries related to ACE2 in the CNS. Finally, we will unveil new tools designed to address the importance of central ACE2 in various diseases, and discuss the potential for this carboxypeptidase as a new target in the treatment of hypertension and other cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号