首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Apoptin, a chicken anemia virus-encoded protein, induces apoptosis in human tumor cells but not in normal cells. In addition, Apoptin also exhibits tumor-specific nuclear localization and tumor-specific phosphorylation on threonine 108 (T108). Here, we studied the effects of T108 phosphorylation on the tumor-specific nuclear localization and apoptotic activity of Apoptin. We first showed that a hemagglutinin (HA)-tagged Apoptin, but not the green fluorescent protein-fused Apoptin used in many previous studies, exhibited the same intracellular distribution pattern as native Apoptin. We then made and analyzed an HA-Apoptin mutant with its T108 phosphorylation site abolished. We found that Apoptin T108 phosphorylation is not required for its tumor-specific nuclear localization and abolishing the T108 phosphorylation of Apoptin does affect its apoptotic activity in tumor cells but only partially. Our results support the previous finding that Apoptin contains two distinct apoptosis domains located separately at the N- and C-terminal regions and suggest that the T108 phosphorylation may only be required for the apoptotic activity mediated through the C-terminal apoptosis domain.  相似文献   

2.
The chicken anemia virus protein Apoptin selectively induces apoptosis in transformed cells while leaving normal cells intact. This selectivity is thought to be largely due to cell type-specific localization: Apoptin is cytoplasmic in primary cells and nuclear in transformed cells. The basis of Apoptin cell type-specific localization and activity remains to be determined. Here we show that Apoptin is a nucleocytoplasmic shuttling protein whose localization is mediated by an N-terminal nuclear export signal (NES) and a C-terminal nuclear localization signal (NLS). Both signals are required for cell type-specific localization, since Apoptin fragments containing either the NES or the NLS fail to differentially localize in transformed and primary cells. Significantly, cell type-specific localization can be conferred in trans by coexpression of the two separate fragments, which interact through an Apoptin multimerization domain. We have previously shown that Apoptin interacts with the APC1 subunit of the anaphase-promoting complex/cyclosome (APC/C), resulting in G(2)/M cell cycle arrest and apoptosis in transformed cells. We found that the nucleocytoplasmic shuttling activity is critical for efficient APC1 association and induction of apoptosis in transformed cells. Interestingly, both Apoptin multimerization and APC1 interaction are mediated by domains that overlap with the NES and NLS sequences, respectively. Apoptin expression in transformed cells induces the formation of PML nuclear bodies and recruits APC/C to these subnuclear structures. Our results reveal a mechanism for the selective killing of transformed cells by Apoptin.  相似文献   

3.
Several natural proteins, including the cellular protein TRAIL and the viral proteins E4orf4 and Apoptin, have been found to exert a tumor-preferential apoptotic activity. These molecules are potential anti-cancer agents with direct clinical applications. Also very intriguing is their possible utility as sensors of the tumorigenic phenotype. Here, we focus on Apoptin, discussing recent research that has greatly increased our understanding of its tumor-specific processes. Apoptin, which kills tumor cells in a p53- and Bcl-2-independent, caspase-dependent manner, is biologically active as a highly stable, multimeric complex consisting of 30 to 40 monomers that form distinct superstructures upon binding cooperatively to DNA. In tumor cells, Apoptin is imported into the nucleus prior to the induction of apoptosis; this contrasts with the situation in primary or low-passage normal cell cultures where nuclear translocation of Apoptin is rare and inefficient. Apoptin contains two autonomous death-inducing domains, both of which exhibit a strong correlation between nuclear localization and killing activity. Nevertheless, forced nuclear localization of Apoptin in normal cells is insufficient to allow induction of apoptosis, indicating that another activation step particular to the tumor or transformed state is required. Indeed, a kinase activity present in cancer cells but negligible in normal cells was recently found to regulate the activity of Apoptin by phosphorylation. However, in normal cells, Apoptin can be activated by transient transforming signals conferred by ectopically expressed SV40 LT antigen, which rapidly induces Apoptins phosphorylation, nuclear accumulation and the ability to induce apoptosis. The region on LT responsible for conferring this effect has been mapped to the N-terminal J domain. In normal cells that do not receive such signals, Apoptin becomes aggregated, epitope-shielded and is eventually degraded in the cytoplasm. Finally, Apoptin interacts with various partners of the human proteome including DEDAF, Nmi and Hippi, which may help to regulate either Apoptins activation or execution processes. Taken together, these recent advances illustrate that elucidating the mechanism of Apoptin-induced apoptosis can lead to the discovery of novel tumor-specific pathways that may be exploitable as anti-cancer drug targets.  相似文献   

4.
Apoptin, a chicken anemia virus-encoded protein, induces apoptosis in human tumor cells but not in normal cells. The tumor-specific activity of Apoptin is correlated with its nuclear localization in tumor cells. In an attempt to elucidate the molecular mechanism of Apoptin-induced apoptosis, we identified human Hippi, the protein interactor and apoptosis co-mediator of Huntingtin interacting protein 1, as one of the Apoptin-associated proteins by yeast two-hybrid screen. We also demonstrated that Hippi could interact with Apoptin both in vitro and in human cells. Furthermore, subcellular localization studies showed that Hippi and Apoptin perfectly colocalized in the cytoplasm of normal human HEL cells, whereas in cancerous HeLa cells most Apoptin and Hippi were located separately in the nucleus and cytoplasm and, thus, showed only a modest colocalization. Mapping studies indicate that Hippi binds within the self-multimerization domain of Apoptin, and Apoptin binds to the C-terminal half of Hippi, including its death effector domain-like motif. Our results suggest that the Apoptin-Hippi interaction may play a role in the suppression of apoptosis in normal cells.  相似文献   

5.
A putative NES mediates cytoplasmic localization of Apoptin in normal cells   总被引:3,自引:0,他引:3  
Chicken anemia virus (CAV) is a small non-envelopedvirus containing a single-stranded circular DNA genome.The virus causes a disease in the newborn chickens, whichis characterized by generalized lymphoid atrophy, increasedmortality and severe anemia. CAV …  相似文献   

6.
The chicken anemia virus (CAV) protein Apoptin is a small, 13.6-kDa protein that has the intriguing activity of inducing G(2)/M arrest and apoptosis specifically in cancer cells by a mechanism that is independent of p53. The activity of Apoptin is regulated at the level of localization. Whereas Apoptin is cytoplasmic in primary cells and does not affect cell growth, in transformed cells it localizes to the nucleus, where it induces apoptosis. The properties of cancer cells that are responsible for activating the proapoptotic activities of Apoptin remain unclear. In the current study, we show that DNA damage response (DDR) signaling is required to induce Apoptin nuclear localization in primary cells. Induction of DNA damage in combination with Apoptin expression was able to induce apoptosis in primary cells. Conversely, chemical or RNA interference (RNAi) inhibition of DDR signaling by ATM and DNA-dependent protein kinase (DNA-PK) was sufficient to cause Apoptin to localize in the cytoplasm of transformed cells. Furthermore, the nucleocytoplasmic shuttling activity of Apoptin is required for DDR-induced changes in localization. Interestingly, nuclear localization of Apoptin in primary cells was able to inhibit the formation of DNA damage foci containing 53BP1. Apoptin has been shown to bind and inhibit the anaphase-promoting complex/cyclosome (APC/C). We observe that Apoptin is able to inhibit formation of DNA damage foci by targeting the APC/C-associated factor MDC1 for degradation. We suggest that these results may point to a novel mechanism of DDR inhibition during viral infection.  相似文献   

7.
双组分核定位信号介导Apoptin定位于肿瘤细胞核   总被引:2,自引:0,他引:2  
Apoptin是一种来源于鸡贫血病毒的小蛋白,在肿瘤细胞中定位于细胞核,而在正常细胞中主要分布于细胞质。根据预测,Apoptin分子中有2段序列(NLS1和NLS2)可能是单组分核定位信号。通过基因突变和缺失构建了Apoptin各种不同的核定位信号突变体和磷酸化突变体,利用增强型绿色荧光蛋白(EGFP)作标签,观察了其在肿瘤细胞中亚细胞定位的变化。结果表明,NLS1和NLS2单独均不是有效的单组分核定位信号。Apoptin的核定位信号是由NLS1和NLS2这2段序列共同组成的双组分核定位信号,缺少任何一段序列都会严重影响Apoptin在肿瘤细胞中的核定位。其中,NLS2对于Apoptin的核定位起主要作用。Apoptin的获得型磷酸化突变体并不能转位到正常细胞的细胞核中,而其磷酸化负突变体仍定位于肿瘤细胞的细胞核。另外,丝氨酸/苏氨酸蛋白激酶抑制剂H7也不影响Apoptin在肿瘤细胞中的核定位。很可能,Apoptin的磷酸化并不参与调控其核定位信号的功能。  相似文献   

8.
Apoptin, a viral death protein derived from chicken anemia virus, displays a number of tumor-specific behaviors. In particular, apoptin is phosphorylated, translocates to the nucleus, and induces apoptosis specifically in tumor or transformed cells, whereas it is nonphosphorylated and remains primarily inactive in the cytoplasm of nontransformed normal cells. Here, we show that in normal cells apoptin can also be activated by the transient transforming signals conferred by ectopically expressed simian virus 40 (SV40) large T antigen (LT), which rapidly induces apoptin's phosphorylation, nuclear accumulation, and the ability to induce apoptosis. Further analyses with mutants of LT showed that the minimum domain capable of inducing all three of apoptin's tumor-specific properties resided in the N-terminal J domain, a sequence which is largely shared by SV40 small t antigen (st). Interestingly, the J domain in st, which lacks its own nuclear localization signal (NLS), required nuclear localization to activate apoptin. These results reveal the existence of a cellular pathway shared by conditions of transient transformation and the stable cancerous or precancerous state, and they support a model whereby a transient transforming signal confers on apoptin both the upstream activity of phosphorylation and the downstream activity of nuclear accumulation and apoptosis induction. Such a pathway may reflect a general lesion contributing to human cancers.  相似文献   

9.
Apoptin's functional N- and C-termini independently bind DNA   总被引:8,自引:0,他引:8  
Apoptin induces apoptosis specifically in tumour cells, where Apoptin is enriched in the DNA-dense heterochromatin and nucleoli. In vitro, Apoptin interacts with dsDNA, forming large nucleoprotein superstructures likely to be relevant for apoptosis induction. Its N- and C-terminal domains also have cell-killing activity, although they are less potent than the full-length protein. Here, we report that both Apoptin's N- and C-terminal halves separately bound DNA, indicating multiple independent binding sites. The reduced cell killing activity of both truncation mutants was mirrored in vitro by a reduced affinity compared to full-length Apoptin. However, none of the truncation mutants cooperatively bound DNA or formed superstructures, which suggests that cooperative DNA binding by Apoptin is required for the formation of nucleoprotein superstructures. As Apoptin's N- and C-terminal fragments not only share apoptotic activity, but also affinity for DNA, we propose that both properties are functionally linked.  相似文献   

10.
Apoptin: Specific killer of tumor cells?   总被引:3,自引:0,他引:3  
In the early 1990s it was discovered that the VP3/Apoptin protein encoded by the Chicken Anemia virus (CAV) possesses an inherent ability to specifically kill cancer cells. Apoptin was found to be located in the cytoplasm of normal cells while in tumor cells it was localized mainly in the nucleus.1 These differences in the localization pattern were suggested to be the main mechanism by which normal cells show resistance to Apoptin-mediated cell killing. Although the mechanism of action of Apoptin is presently unknown, it seems to function by the induction of programmed cell death (PCD) after translocation from the cytoplasm to the nucleus and arresting the cell cycle at G2/M, possibly by interfering with the cyclosome.2 In addition, cancer specific phosphorylation of Threonine residue 108 has been suggested to be important for Apoptin’s function to kill tumor cells.3 In contrast to the large number of publications reporting that nuclear localization, induction of PCD and phosphorylation of Apoptin is restricted to cancer cells, several recent studies have shown that Apoptin has the ability to migrate to the nucleus and induce PCD in some of the normal cell lines tested. There is evidence that high protein expression levels as well as the cellular growth rate may influence Apoptin’s ability to specifically kill tumor cells. Thus far both in vitro and in vivo studies indicate that Apoptin is a powerful apoptosis inducing protein with a promising prospective utility in cancer therapy. However, here we show that several recent findings contradict some of the earlier results on the tumor specificity of Apoptin, thus creating some controversy in the field. The aim of this article is to review the available data, some published and some unpublished, which either agree or contradict the reported “black and white” tumor cell specificity of Apoptin. Understanding what factors appear to influence its function should help to develop Apoptin into a potent anti-cancer agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号