首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of post-feeding (early day 3; wandering phase) last-stadium larvae of the cabbage looper, Trichoplusia ni, with the anti-juvenile hormone, fluoromevalonolactone, prevented the normal ecdysis to the pupa. It caused the formation of larval-pupal intermediates, a dose-dependent delay in the time of tanning, and a decrease in juvenile hormone esterase activity at the time of the prepupal juvenile hormone esterase peak. Fluoromevalonolactone was inactive as juvenile hormone esterase inhibitor in vitro. Conversely, juvenile hormone I accelerated the time of tanning, induced the early appearance of juvenile hormone esterase activity, and prevented adult eclosion. Although most of the larvae that were treated with fluoromevalonolactone immediately after the prepupal burst of juvenile hormone (late on day 3; post-spinning phase) still became larval-pupal intermediates, the time of tanning and juvenile hormone esterase activity were close to normal. Topical treatment of day-3 larvae with radiolabelled juvenile hormone I resulted in the rapid appearance and decline of radiolabelled juvenile hormone I in the haemolymph which was associated with the increased production of juvenile hormone I acid and the induced appearance of juvenile hormone esterase activity. Thus, in post-feeding last-stadium larvae of T. ni, juvenile hormone seems to be necessary for the proper formation of the pupa. Juvenile hormone is also involved in determining the time of pupation, and it appears to induce its own degradation.  相似文献   

2.
In vitro analysis of juvenile hormone esterase activity of haemolymph of T. molitor was performed during the end of post-embryonic development. Weak activity was found in penultimate stage larvae as in the major part (except the last day) of last-larval instar, while very high activity was monitored in the early pupae (female or male).This pupal peak was the only one detected during development in the insect, coinciding with the pupal juvenile hormone sensitive period. The first juvenile hormone sensitive period, during the lastlarval instar, does not seem to be protected by any juvenile hormone esterase activity in contrast to other species. These results suggest a central control for the drop in juvenile hormone level ceasing synthesis by the corpora allata after integration of external stimuli. This hypothesis could explain the natural occurrence of prothetelic larvae, the absence of pupal adult intermediates and the variable number of instars in Tenebrio.  相似文献   

3.
The effects of juvenile hormone, antiallatotropins, selected surgical procedures and starvation on the juvenile hormone esterase levels in Galleria larvae and pupae were investigated. JH reduced JH esterase activity in larvae but induced the enzyme in 1-day-old pupae. In vitro studies confirmed that the peak of synthesis and/or release of JH esterase from the fat body of last instar larvae occurred 4 days after ecdysis. These studies also showed that fat body from JH-treated larvae released much less enzyme than controls. Antiallatotropins, precocene 2 and ZR 2646 also reduced JH esterase levels in larvae, but ZR 2646 induced JH esterase in pupae. In starved larvae, JH esterase did not increase during the first five days. A minimum of 36 hr of feeding was necessary for the larval esterase activity to increase on schedule on day 4 of the last larval stadium. When day-l larvae were ligated behind the head or the prothorax, they had lower JH esterase levels and yet showed a slight increase in the enzyme when the larvae reached the age of 4 days. The significance of these results is discussed in relation to the possible control of esterase activity during metamorphosis.  相似文献   

4.
Weight and time of moult during the last instar of the cabbage looper (Trichoplusia ni) were examined and used to select last instar larvae that had similar rates of development. Haemolymph protein content and titres of haemolymph esterases hydrolyzing juvenile hormone I, juvenile hormone III, and α-naphthyl acetate were monitored during the last instar using these closely timed larvae. Juvenile hormone I and juvenile hormone III esterase profiles were very similar and differed markedly from the α-naphthyl acetate esterase and protein content profiles. Two major peaks of juvenile hormone esterase activity were observed, one before ecdysone release and the other just prior to pupal ecdysis. Juvenile hormone I was hydrolyzed 15 times faster than juvenile hormone III when assayed at 5 × 10?6 M.  相似文献   

5.
Juvenile hormone esterase titres were monitored in gate I and gate II last instar larvae of Trichoplusia ni using JH III as substrate. Two peaks of activity were observed for both gate I and gate II larvae, although the first and second juvenile hormone esterase peaks for the gate II larvae are extended and delayed one day, respectively. Head or thoracic ligations before the prepupal stage lower or block the appearance of both esterase peaks. Juvenile hormone I and II, as well as homo and dihomo juvenoids can induce the second juvenile hormone esterase peak in both normal and ligated larvae, and increase the esterase titre during the first peak in nonligated larvae. Induction of the juvenile hormone esterases is possible in non-ligated larvae as soon as the moult to the last instar has occurred and in ligated larvae as soon as the first esterase peak has started to decline. Distinct mechanisms of regulation are present for the first and second juvenile hormone esterase peaks. Juvenile hormone does not appear to be involved in regulating its own metabolism by directly inducing the first esterase peak; however, evidence is consistent with a brief burst of juvenile hormone which occurs prior to pupation inducing the production of the second peak of juvenile hormone esterase activity.  相似文献   

6.
Haemolymph levels of juvenile hormone esterase, 1-naphthyl acetate esterase, and juvenile hormone were measured in synchronously staged diapause and nondiapause larvae of the European corn borer, Ostrinia nubilalis. Juvenile hormone esterase levels were monitored using juvenile hormone I as a substrate while juvenile hormone titres were measured with the Galleria bioassay. Haemolymph of nondiapause larvae showed two peaks of juvenile hormone hydrolytic activity: one near the end of the feeding phase and a smaller one just prior to pupal ecdysis. These peaks of enzyme activity correlated well with the low levels of haemolymph juvenile hormone. Juvenile hormone titres were high early in the stadium then showed a second peak during the prepupal stage coinciding with low esterase activity. Diapause haemolymph had peak juvenile hormone esterase activity nearly 4 times the nondiapause level, reaching a peak near the end of the feeding phase. Diapause-destined larvae retained high juvenile hormone titres even during the rise of the high esterase levels. 1-naphthyl acetate esterase levels did not correlate with the juvenile hormone esterase levels in either the diapause or nondiapause haemolymph. High levels of 1-naphthyl acetate esterase activity were associated with moulting periods.  相似文献   

7.
The regulation of juvenile hormone esterase in last-instar diapause and nondiapause larvae of Ostrinia nubilalis was investigated using topically applied juvenile hormone I and a juvenile hormone mimic, methoprene. The influence of the head on juvenile hormone esterase was also investigated. Both juvenile hormone and methoprene caused increases in esterase levels when applied to feeding animals. Neither the hormone nor methoprene was capable of elevating nondiapause esterase activity to levels comparable to those found in untreated prediapause larvae. The esterase levels could be elevated in the larval body, without the head, during prepupal development of nondiapause larvae and in post-feeding diapause larvae. In both cases, juvenile hormone or methoprene induced juvenile hormone esterase activity in head-ligated animals. Topically applied methoprene prolonged feeding and delayed the onset of diapause. When methoprene was applied to larvae that had entered diapause, it disrupted diapause by inducing a moult.  相似文献   

8.
The juvenile hormone antagonist ETB (ethyl-4-2(t-butylcarbonyloxy)-butoxybenzoate) caused formation of precocious larval-pupal intermediates after the 4th (penultimate)-larval instar of the tobacco hornworm, Manduca sexta, when 50 μg were applied to any 3rd stage larvae or to 4th stage larvae within 12 hr after ecdysis. This dose was most effective within 12 hr after ecdysis to the 3rd stage. In the black mutant larval assay for juvenile hormone, ETB had activity, 0.75 μg per larva giving half-maximal score. In vitro ETB acted as a juvenile hormone to prevent the ecdysteroid-induced change in commitment at concentrations above 0.1 μg/ml with an ED50 at 2.8 μg/ml and as a partial juvenile hormone antagonist to 0.1 μg/ml juvenile hormone I at concentrations between 10?3 and 10?2 μg/ml. By contrast, EMD (ethyl-E-3-methyl-2-dodecenoate) had little juvenile hormone-like activity in vitro up to its limits of solubility (100 μg/ml) and exhibited sporadic partial juvenile hormone antagonistic activity in vitro at concentrations between 1 and 100 μg/ml. Since these concentrations were 10–1000 times that of juvenile hormone I in the medium, EMD apparently is not an efficient competitor.  相似文献   

9.
Four 3-alkylthio-1,1,1-trifluoro-2-propanones with juvenile hormone-like side chains were prepared from citronellol and homogeraniol. These substrates were designed as possible transition-state analogs for the juvenile hormone (JH)-specific esterases present in insects. These four isoprenoid trifluoromethyl ketones were assayed in vitro with JH esterase and general esterases from larvae of the cabbage looper, Trichoplusia ni (Lepidoptera, Noctuidae), and with eel acetylcholinesterase and bovine chymotrypsin. JH esterase inhibition I50 values were in the nanomolar range for all four compounds, while the other esterases had I50'S which were 103 to 105 higher. The high selectivity of these inhibitors is believed to be due to their similarity in size and functionality to natural JH III. Treatment of T. ni larvae in vivo with solutions of the most active analog, 3-[(E)-4,8-dimethyl-3,7-nonadienylthio]-1,1,1-trifluoro-2-propanone (DNTFP) causes a dose-dependent delay in pupation and a concurrent selective inhibition of JH esterase. These data support the hypothesis that the reduction in in vivo JH titer in larval T. ni is due, in part, to hydrolysis of the hormone by selective esterases. DNTFP appears to be competing with JH for the active site of JH esterase.  相似文献   

10.
When tobacco hornworm (manduca sexta) larvae are starved for 5 days immediately after ecdysis to the 5th instar, then fed normal diet, they undergo a supernumerary moult instead of metamorphosis. During starvation the titre of juvenile hormone in the haemolymph increased to a maximum of 3 ng juvenile hormone I equivalents/ml (determined by the black Manduca larval bioassay) on the fourth day of starvation, then began a decline which continued through the subsequent feeding period. The changes in juvenile hormone titre were not attributable to changes in haemolymph volume during starvation (only a 5% decrease) and subsequent feeding. During starvation the esterase activity of the haemolymph declined 4-fold with a 2-fold larger decrease in the DFP-insensitive, presumably juvenile hormone specific, esterase activity. Both the total and the juvenile hormone-specific esterase activity then increased as a function of larval weight during the subsequent feeding period. As growth was slow in the prolongedly starved larvae, sufficient juvenile hormone was present at the time of prothoracicotropic hormone (PTTH) and ecdysteroid release at the beginning of the fourth day of feeding to prevent metamorphosis.  相似文献   

11.
The application of juvenile hormone I or ZR 512 to neck-ligated, day-5 fifth instar (V5) larvae reduced the time to pupation in a dose-dependent manner when compared to neck-ligated controls treated with methyl epoxy stearate. Haemolymph ecdysteroid titres determined by radioimmunoassay (RIA) reflected the ability of juvenile hormone I and ZR 512 to stimulate larval-pupal development, i.e. the ecdysteroid titres were similar to those of normally developing larvae although the ecdysteroid peak elicited by ZR 512 lagged that in the normal titre by 1 day, while that elicited by juvenile hormone I lagged the ecdysteroid peak in normal larvae by 2 days. Neck-ligated V5 larvae that were untreated ultimately pupated and the haemolymph ecdysteroid peak eliciting pupation in these animals was 7 μg/ml haemolymph, almost double that of normal animals and ZR 512- and juvenile hormone I-treated, ligated larvae. The data indicated that juvenile hormone I does stimulate the prothoracic glands but to determine whether this stimulation was direct or indirect, an in vitro approach was taken. Prothoracic glands from V5, V6 and V7 larvae were incubated in vitro under conditions in which they could be stimulated by prothoracicotropic hormone, and were exposed to concentration of free juvenile hormones I, II, III or ZR 512 ranging from 10?5M to 10?10M. In no case were the prothoracic glands stimulated in a dose-dependent manner that would be indicative of hormone activation. Similar results were obtained when juvenile hormone bound to binding protein was incubated with the prothoracic glands. Studies with the acids of the three juvenile hormone homologues revealed them to be ineffective in activating prothoracic glands, although juvenile hormone III acid does appear to inhibit the synthesis of ecdysone by day-0 pupal prothoracic glands. The significance of the latter effect is unknown. It is concluded from these data that juvenile hormone can, indeed, activate late larval prothoracic glands in situ, but does so indirectly.  相似文献   

12.
ABSTRACT. Parasitization of Trichoplusia ni (Huebner) (Lepidoptera: Noctuidae) by Chelonus sp. (Hymenoptera: Braconidae), an egg-larval parasitoid, leads to precocious cocoon spinning of the host in the fourth (penultimate) stadium followed by parasitoid emergence from the prepupa. We have investigated the mechanism by which Chelonus sp. disrupts host development. The developing larva and fluids injected by the adult female separately from the egg, are not the source of these effects, but it remains a possibility that the teratocytes, originating from the trophamnion of the parasitoid egg, are responsible. The titre of the juvenile hormone esterase activity in the haemolymph of the parasitized fourth instar host is similar to that in the initial period of the final instar of normal T. ni, but lacks the postwandering peak of activity. The increased JHE activity leads to a reduced JH titre early in the fourth stadia. This indicates that disruption of host development occurs within 12h after apolysis to the fourth stadium, if not before. Anti-juvenile hormone activity is not detected in extracts of parasitized T. ni. The morphological and behavioural changes associated with precocious development of the T. ni host are prevented by applications of juvenile hormone I, juvenile hormone II and the juvenoid, Ro 10–3108, but not juvenile hormone III and the juvenoid R 20458. However, these applications fail to prevent the onset of juvenile hormone esterase activity, another marker of precocious development. These observations indicate that simple anti-juvenile hormone activity may not be the mechanism of disruption of host development. Development of the parasitoid is disrupted by application of Ro 10–3108 and juvenile hormones I, II and III, but timing of eclosion is only affected by application of juvenile hormone I, juvenile hormone II and Ro 10–3108. This observation may indicate a discrimination by the parasitoid between its own juvenile hormone III and the host's juvenile hormone II.  相似文献   

13.
A radiochemical assay measuring juvenile hormone synthesis by corpora allata incubated in vitro was adapted for use with the termite Zootermopsis angusticollis. Corpora allata from 3–4-day old virgin female neotenic reproductives were used in these studies because this caste showed the highest rates of juvenile hormone synthesis (0.6 pmol h?1 per pair corpora allata). Juvenile hormone-III synthesis was linear for up to 6 h over the range of concentrations of labelled l-methionine from 27–280 μM. Rates of juvenile hormone synthesis were stimulated up to 10-fold in a dose-dependent manner by the addition of farnesoic acid to the incubation medium. However, the relatively high concentration of 120 μM farnesoic acid reduced the rates of juvenile hormone synthesis. The radiochemical assay was used to determine rates of juvenile hormone synthesis in vitro by corpora allata from larvae with a queen and king vs orphaned larvae. The presence of reproductives resulted in a suppression of larval corpus allatum activity relative to orphaned controls.  相似文献   

14.
Regulation of corpus allatum activity in the black mutant strain of Manduca sexta was studied in vivo and in vitro. Allatectomy, denervation, and implantation studies demonstrated that black mutant corpus allatum activity remains low in both wild-type and black mutant host larvae. Attempts to distinguish humoral control mechanisms versus mechanisms dependent on intact allatal nerves indicated that intact allatal nerves were not required for the reduced black mutant corpus allatum activity in vivo. Incubation of corpora allata, using [1-14C]propionate as a juvenile hormone biosynthetic precursor and haemolymph as culture medium, confirmed that black mutant corpora allata are suppressed by a factor(s) in the haemolymph. Under identical conditions wild-type corpora allata were unaffected. Finally, the lowered black mutant corpus allatum activity in haemolymph in vitro correlates with the lowered juvenile hormone titre in black mutant larvae.  相似文献   

15.
A radioimmunoassay (RIA) for juvenile hormone III has been established which quantifies the biosynthesis of this hormone in vitro by the corpora allata of larvae and pupae of the tobacco hornworm, Manduca sexta. The specificity of the RIA for homologues and metabolites of juvenile hormone III was determined and it was found that the antibody was specific for juvenile hormone III and its acid. The juvenile hormone III RIA activity synthesized in vitro by corpora allata from day-5 last-instar larvae was identified as juvenile hormone III by high pressure liquid chromatography. The kinetics of hormone synthesis by corpora allata from selected stages during larval-pupal development revealed differential rates of synthesis, suggesting that juvenile hormone III may have a hormonal function in the larva and that regulation of its synthesis may occur. The significance of these developmental fluctuations in rates of juvenile hormone III synthesis by the corpora allata is discussed in relation to the haemolymph titres of the hormone.  相似文献   

16.
《Journal of Asia》2002,5(2):175-180
Diflubenzuron (DFB) has been known to prevent metamorphosis of silkworm, Bombyx mori, from larval to pupal stage at low dose exposure. To explain this inhibitory action of DFB, a hypothesis was raised that DFB acts like juvenile hormone (JH) or DFB inhibits JH esterase to increase endogenous JH titer. A JH bioassay using isolated abdomen clearly indicates that DFB does not act as JH analog because DFB did not induce vitellogenesis in the isolated female abdomen, while endogenous JHs did significantly. General esterase activities in hemolymph were lower in DFB-treated fifth instar larvae than in the control larvae, but there was no difference between fat body esterase activities in both groups. Two hemolymph esterases (‘E1’ and ‘E2’) of the fifth instar larvae were separated and visualized by α-and β-naphthyl acetate. From in vitro incubation experiment, the cathodal esterase (‘E1’) was sensitive to DFB at its nanomolar range. Considering the fact that early fifth instar larvae have high level of JH esterase in the hemolymph, these results suggest that DFB inhibit larval to pupal metamorphosis by blocking JH degradation, which increases endogenous JH titer especially at the critical period when the larvae determine metamorphic development at the following molt.  相似文献   

17.
重组保幼激素酯酶的纯化和生物学效应   总被引:1,自引:1,他引:0  
章东方 《昆虫学报》2002,45(6):743-747
培养昆虫细胞生产重组昆虫保幼激素酯酶时细胞培养液的蛋白质浓度为153.2~188.0 μg/mL。批量处理纯化重组保幼激素酯酶时酶蛋白活力回收率33%,效果与梯度分离方法相当,但简便快速,可作为大量分离纯化的第一步。重组保幼激素酯酶对烟草天蛾Manduca sexta幼虫的生物学活性测定结果验证了重组保幼激素酯酶对烟草天蛾幼虫和自身天然酶有相似的生物学活性。  相似文献   

18.
Assay conditions for the short-term, radiochemical, in vitro determination of the spontaneous rate of juvenile biosynthesis by isolated corpora allata from Leptinotarsa decemlineata have been further improved, permitting the measurement of juvenile hormone biosynthesis by individual pairs of corpora allata. The final incubation product has been identified as juvenile hormone III with the aid of High-performance liquid chromatography (HPLC) and juvenile hormone esterase degradation. Using the new assay conditions, the activities of adult corpora allata during maturation were found to be significantly higher in reproductive, long-day animals than in pre-diapause, short-day beetles. During diapause no activity was detectable, whereas corpora allata from post-diapause beetles were reactivated totally after 5 days. Simultaneous determination of the in vitro rates of juvenile hormone biosynthesis and corpus allatum volumes revealed no clear correlation although the results suggest that the volume may be indicative of the maximal capacity for juvenile hormone production. Corpora allata from a population of beetles did not display any synchronous diurnal rhythmicity.  相似文献   

19.
Juvenile hormone or ZR512 applied topically to day-5, fifth-instar, neck-ligated Manduca sexta larvae results in the acceleration of pharate pupal development when compared to neck-ligated, untreated larvae. This occurs as a result of an increase in the haemolymph ecdysteroid titre. Juvenile hormone, therefore, appears to stimulate ecdysone synthesis by the prothoracic glands of these animals, but not directly as shown by in vitro analysis. When ecdysone synthesis by the prothoracic glands of these ZR512- or juvenile hormone-treated animals was analyzed in vitro, increased gland activity was demonstrated but this did not occur until at least 2 days after treatment. This time lag in response supports the concept of an indirect stimulation of the prothoracic glands. Incubation of fat body from these ZR512- or juvenile hormone-treated, neck-ligated, larvae in 19AB culture medium revealed that the resulting pre-conditioned medium was capable of stimulating prothoracic glands in vitro up to 9-fold in a dose-dependent manner. A developmental profile was generated of the amount of this stimulatory factor released into the medium by fat body of untreated larvae representing each day of the last instar, and revealed that maximal release occurred with fat body from day-9 animals. The alterations in the amount of factor release by the fat body during larval-pupal development roughly correlated with the juvenile hormone titre and suggested a possible role for this factor in the regulation of the ecdysteroid titre. In contrast to the prothoracicotropic hormone, the fat body stimulatory factor is heat labile and has an apparent mol. wt in the 30,000 Dalton range. These data, particularly the kinetics of prothoracic gland stimulation, suggest that the factor may be a protein transporting a substrate for ecdysone biosynthesis to the prothoracic glands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号