首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Invasive insects and plants are major threats to the health and viability of North American forests. Emerald ash borer (Agrilus planipennis) (EAB) may cause extensive changes to forest composition due to rapid ash (Fraxinus spp.) mortality. Invasive shrubs like Amur honeysuckle (Lonicera maackii) may benefit from EAB and have negative effects on woody seedlings. We predict that ash mortality has positive effects on seedling abundance, recruitment, and survival, but that these effects are influenced by L. maackii basal area and/or cover. We sampled 16 sites, representing a chronosequence of ash mortality throughout western Ohio. We tested whether L. maackii growth and fecundity varied in relation to ash decline. We also investigated effects of ash decline, stand basal area (BA), L. maackii BA and percent cover on woody seedling abundance, recruitment, and survival using linear mixed models evaluated with Akaike’s Information Criterion. These same responses were also investigated for four seedling groups: L. maackii, invasive plants (excluding L. maackii), shade tolerant natives, and shade intolerant natives. We found a significant positive relationship between ash decline and L. maackii BA growth. Lower seedling species richness corresponded with greater L. maackii BA and better ash condition. Greater L. maackii BA was also associated with lower seedling abundance and recruitment, as well as abundance and recruitment of shade-tolerant species, and recruitment of shade-intolerant species. Sites with poorer ash condition and greater L. maackii BA had more L. maackii seedlings. These findings indicate that the negative effects of L. maackii are more important to future forest composition than ash decline; however ash decline increases L. maackii growth, hence exacerbating the effects of this invasive shrub.  相似文献   

2.
In forests, the vulnerable seedling stage is largely influenced by the canopy, which modifies the surrounding environment. Consequently, any alteration in the characteristics of the canopy, such as those promoted by forest dieback, might impact regeneration dynamics. Our work analyzes the interaction between canopy neighbors and seedlings in Mediterranean forests affected by the decline of their dominant species (Quercus suber). Our objective was to understand how the impacts of neighbor trees and shrubs on recruitment could affect future dynamics of these declining forests. Seeds of the three dominant tree species (Quercus suber, Olea europaea and Quercus canariensis) were sown in six sites during two consecutive years. Using a spatially-explicit, neighborhood approach we developed models that explained the observed spatial variation in seedling emergence, survival, growth and photochemical efficiency as a function of the size, identity, health, abundance and distribution of adult trees and shrubs in the neighborhood. We found strong neighborhood effects for all the performance estimators, particularly seedling emergence and survival. Tree neighbors positively affected emergence, independently of species identity or health. Alternatively, seedling survival was much lower in neighborhoods dominated by defoliated and dead Q. suber trees than in neighborhoods dominated by healthy trees. For the two oak species, these negative effects were consistent over the three years of the experimental seedlings. These results indicate that ongoing changes in species’ relative abundance and canopy trees’ health might alter the successional trajectories of Mediterranean oak-forests through neighbor-specific impacts on seedlings. The recruitment failure of dominant late-successional oaks in the gaps opened after Q. suber death would indirectly favor the establishment of other coexisting woody species, such as drought-tolerant shrubs. This could lead current forests to shift into open systems with lower tree cover. Adult canopy decline would therefore represent an additional factor threatening the recruitment of Quercus forests worldwide.  相似文献   

3.

Key message

Cork oak has buds protected by the full thickness of its substantial phellem, thus explaining why it is the only European tree that can epicormically resprout after higher intensity fire.

Abstract

Epicormic resprouting has various ecological advantages over basal resprouting. However, after higher intensity fires epicormic resprouting is rare as it is difficult for trees and shrubs to keep both their buds and vascular cambia alive. Quercus suber (cork oak) is the only European tree that can resprout epicormically after higher intensity fires. Q. suber develops very thick bark and it has been assumed, without anatomical evidence, that the bark protects the epicormic buds. We investigated if developmental anatomy could explain why Q. suber is an excellent post-fire epicormic resprouter. We examined buds from mature Q. suber trees, macroscopically using a stereo microscope and microscopically using semi-thin microtome sections. Q. suber produced buds in the foliage leaf axils and the bud scale axils. With the commencement of extensive phellem (cork) production the base of the epicormic buds remained at, or just below, the level of the phellogen and thus cork began to bury the buds, although a narrow tube connected each bud to the bark surface. Q. suber epicormic buds became deeply buried in the phellem and would be protected from heat by the full phellem thickness. With its rapid and substantial development of phellem Q. suber had well-protected epicormic buds even in relatively small diameter stems. These results provide the anatomical evidence to show why Q. suber is a noted epicormic resprouter after crown fire.
  相似文献   

4.
Over the past few decades, rural forest ecosystems in Japan have experienced dynamic vegetation changes due to forest dieback and changes in land use, leading to the loss of local species populations and biodiversity. The aim of this study was to evaluate the importance of pine (Pinus densiflora) stumps and logs for tree seedling regeneration in a mixed natural forest in Kyoto Prefecture, Japan, that had previously experienced severe pine dieback, and to determine which factors most greatly affect seedling establishment. Seedlings of 17 tree species were recorded on pine stumps and logs in later stages of decay, among which Chamaecyparis obtusa and Rhododendron reticulatum were most dominant. Both of these species had a greater density on pine stumps than on logs or soil, despite stumps covering less than 0.5% of the study area. In addition, the seedling densities of both species were positively associated with moss cover on coarse woody debris, but negatively associated with wood pH. Brown rot in the sapwood and heartwood, which occurred more frequently in stumps than in logs, also positively associated with the seedling densities of both species. Predictive modelling showed that C. obtusa seedlings exhibited a stronger response to pH in stumps than in logs. Therefore, since brown-rotted wood is acidic due to fungal decay activities, brown-rotted pine stumps may present hotspots of C. obtusa seedling regeneration at the study site.  相似文献   

5.
Many plants release allelopathic chemicals that can inhibit germination, growth, and/or survival in neighboring plants. These impacts appear magnified with the invasion of some non-native plants which may produce allelochemicals against which native fauna have not co-evolved resistance. Our objective was to examine the potential allelopathic impact of an invasive non-native shrub/tree on multiple plant species using field observation and experimental allelopathy studies. We surveyed and collected an invasive, non-native tree/shrub (Rhamnus cathartica) at Tifft Nature Preserve (a 107-ha urban natural area near Lake Erie in Buffalo, NY). We also surveyed understory plant communities in the urban forest to examine correlations between R. cathartica abundance and local plant community abundance and richness. We then used experimental mesocosms to test if patterns observed in the field could be explained by adding increased dosages of R. cathartica to soils containing five plant species, including native and non-native woody and herbaceous species. In the highly invaded urban forest, we found that herbaceous cover, shrubs and woody seedlings negatively covaried with R. cathartica basal area and seedlings density. In the mesocosm experiments, R. cathartica resulted in significant decreases in plant community species richness, abundance, and shifted biomass allocation from roots. Our results provide evidence that R. cathartica is highly allelopathic in its invaded range, that R. cathartica roots have an allelopathic effect and that some plant species appear immune. We suggest that these effects may explain the plant’s ability to form dense monocultures and resist competitors, as well as shift community composition with species-specific impacts.  相似文献   

6.
Lopez OR  Kursar TA 《Oecologia》2007,154(1):35-43
Flood tolerance is commonly regarded as the main factor explaining low diversity and monodominance in tropical swamps. In this study we examined seedling mortality in relation to seasonality, i.e., flooding versus drought, of the dominant tree species (Prioria copaifera), and three associated species (Pterocarpus officinalis, Carapa guianensis and Pentaclethra macroloba), in seasonally flooded forests (SFF) in Darien, Panama. Seedling mortality differed among species, years and seasons. Prioria seedlings experienced the lowest overall mortality, and after 3 years many more Prioria seedlings remained alive than those of any of the associated species. In general, within species, larger seedlings had greater survival. Seed size, which can vary by close to 2 orders of magnitude in Prioria, had a confounding effect with that of topography. Large-seeded Prioria seedlings experienced 1.5 times greater mortality than small-seeded seedlings, as large-seeded Prioria seedlings were more likely to be located in depressions. This finding suggests that seed size, plant size and topography are important in understanding SFF regeneration. For all species, seedling mortality was consistently greater during the dry season than during flooding. For Prioria, dry season seedling mortality was correlated with drought stress, that is, high mortality during the long El Niño dry season of 1998 and the normal dry season of 2000, but very low dry season mortality during the mild dry season of 1999. Prioria’s ability to dominate in seasonally flooded forest of Central America is partly explained by its low drought-related mortality in comparison to associated species.  相似文献   

7.
We asked the following questions regarding gap dynamics and regeneration strategies in Juniperus-Laurus forests: How important are gaps for the maintenance of tree diversity? What are the regeneration strategies of the tree species? Thirty canopy openings were randomly selected in the forest and in each the expanded gap area was delimited. Inside expanded gaps the distinction was made between gap and transition zone. In the 30 expanded gaps a plot, enclosing the gap and transition zone, was placed. In order to evaluate the differences in regeneration and size structure of tree species between forest and expanded gaps, 30 control plots were also delimited in the forest, near each expanded gap. In the 60 plots the number of seedlings, saplings, basal sprouts and adults of tree species were registered. Canopy height and width of adult individuals were also measured. The areas of the 30 gaps and expanded gaps were measured and the gap-maker identified. Juniperus-Laurus forests have a gap dynamic associated with small scale disturbances that cause the death, on average, of two trees, mainly of Juniperus brevifolia. Gap and expanded gap average dimensions are 8 and 25 m2, respectively. Gaps are of major importance for the maintenance of tree diversity since they are fundamental for the regeneration of all species, with the exception of Ilex azorica. Three types of regeneration behaviour and five regeneration strategies were identified: (1) Juniperus brevifolia and Erica azorica are pioneer species that regenerate in gaps from seedlings recruited after gap formation. However, Juniperus brevifolia is a pioneer persistent species capable of maintaining it self in the forest due to a high longevity and biomass; (2) Laurus azorica and Frangula azorica are primary species that regenerate in gaps from seedlings or saplings recruited before gap formation but Laurus azorica is able to maintain it self in the forest through asexual regeneration thus being considered a primary persistent species; (3) Ilex azorica is a mature species that regenerates in the forest.  相似文献   

8.
Pronounced strategy shifts along ontogeny have been observed in several tree species, mainly because of the trend to maximize growth during the seedling stage, which constitutes the most vulnerable part of the tree’s life cycle. Our aim here was to analyze the ontogenetic changes in crown characteristics and light capture patterns in three Quercus species: the evergreens Quercus ilex and Quercus suber and the deciduous Quercus faginea co-occurring in a Mediterranean open woodland. The seedlings were distributed in the large clearings among the adults and received full sunlight. We constructed three-dimensional models of the aerial parts of seedlings and mature trees of the three species, using the YplantQMC program. Large differences between growth stages were observed for all variables. The seedlings exhibited smaller branch sizes and crown densities than those observed in the adult trees. Leaf angles to horizontal also tended to increase during ontogeny, whereas leaf dispersion and the observed distances between leaves tended to decrease. The amount of photosynthetic radiation absorbed per unit leaf area throughout the growing season was lower in adult specimens than in young specimens. Changes in absorption efficiency during ontogeny were more intense for the species with longer leaf life span at maturity. We conclude that more intense ontogenetic shifts in species with longer leaf life span reflect the priority change from the maximization of short-term productivity at the seedling stage to maximizing leaf longevity during the adult stage.  相似文献   

9.
There are numerous examples of how exotic insect pests and pathogens have altered the dominance of native tree species. Changes to the structure of associated communities will depend on whether the affected species survives and if so, the degree to which it is diminished. In the southeastern USA, Persea borbonia, a common tree found in many coastal plain habitats, is the primary host of laurel wilt disease (LWD); infection rates and main-stem mortality are catastrophically high (>90%) in invaded populations. We simulated the effects of LWD prior to its arrival in coastal Mississippi by girdling and then removing the main stems of P. borbonia trees. Over a 2-year period, we monitored P. borbonia persistence via basal resprouts, understory light availability, and community structure. Removal of P. borbonia main stems resulted in a 50% increase in light transmission (measured at 1 m above ground level). All treated individuals produced basal resprouts, the size and number of which were positively related to initial tree girth. Post-treatment increases in basal area were greatest for the sub-canopy species, Ilex vomitoria, and were significantly higher in treatment versus control plots. Woody seedlings and herbaceous plants showed no significant trends in composition and abundance over time or between control and treatment plots. Our results suggest that removal of P. borbonia and subsequent resprouting causes shifts in P. borbonia size class frequencies and sub-canopy species dominance but has negligible impacts on understory plant community dynamics.  相似文献   

10.
Wildfires are rare in the disturbance history of Hawaiian forests but may increase in prevalence due to invasive species and global climate change. We documented survival rates and adaptations facilitating persistence of native woody species following 2002–2003 wildfires in Hawaii Volcanoes National Park, Hawaii. Fires occurred during an El Niño drought and were ignited by lava flows. They burned across an environmental gradient occupied by two drier shrub-dominated communities and three mesic/wet Metrosideros forest communities. All the 19 native tree, shrub, and tree fern species demonstrated some capacity of postfire persistence. While greater than 95% of the dominant Metrosideros trees were top-killed, more than half survived fires via basal sprouting. Metrosideros trees with diameters >20 cm sprouted in lower percentages than smaller trees. At least 17 of 29 native woody species colonized the postfire environment via seedling establishment. Although the native biota possess adaptations facilitating persistence following wildfire, the presence of highly competitive invasive plants and ungulates will likely alter postfire succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号