首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cytoplasmic membranes were isolated from wild type and mutants strain M-1 of Paracoccus denitrificans grown with low aeration to promote synthesis of nitrate reductase protein and cytochrome b. The presence of 10-100-fold excess of nitrate reductase in the wild type or the corresponding enzymically inactive protein in the mutant did not significantly affect respiratory oxidase activities with NADH, succinate or TMPD-ascorbate as electron donor. A cytochrome b-nitrate reductase complex was resolved by isoelectric focussing of Triton X-100 solubilized membranes from the wild type grown with azide and from the mutant, whereas the enzyme complex from nitrate-grown wild type was not resolved from cytochrome c. Preparations from azideinduced wild type or from the mutant could be a suitable source of the cytochrome b associated with nitrate reductase for more detailed studies.Non standard abbreviations IEF isoelectric focussing - TMPD N, N, N, N-tetramethylphenylenediamine - SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis  相似文献   

2.
Several filamentous and unicellular cyanobacteria were grown photoautotrophically with nitrate or dinitrogen as N-sources, and some respiratory properties of the cells or isolated plasma (CM) and thylakoid (ICM) membranes were compared. Specific cytochrome c oxidase activities in membranes from dinitrogen-fixing cells were between 10- and 50-times higher than those in membranes from nitrate-grown cells, ICM of heterocysts but CM of unicells being mainly responsible for the stimulation. Whole cell respiration (oxygen uptake) of diazotrophic unicells paralleled increased cytochrome oxidase activities of the isolated membranes. Mass spectrometric measurements of the uptake of isotopically labeled oxygen revealed that (low) light inhibited respiration of diazotrophic unicells to a much lesser degree than that of nitrate-grown cells which indicates the prevailing (respiratory) role of CM in the former. Normalized growth yields of diazotrophic unicells grown in continuous light were significantly higher than those of cells grown in a 12/12 hrs light/dark cycle. Mass spectrometry showed that overall nitrogen uptake by the former was higher than by the latter; in particular, and in marked contrast to the time course of nitrogenase activity (acetylene reduction) there was no appreciable nitrogen uptake or protein synthesis during dark periods; likewise, there was no 14-CO2 fixation, nor chloropholl synthesis, nor cell division in the dark. By contrast, growth in continuous light gave sustained rates of nitrogen and carbon dioxide incorporation over the whole time range. Our results will be discussed in terms of respiratory protection as an essential strategy of keeping apart nitrogenase and oxygen, either atmospheric or photosynthetically produced within the same cell.  相似文献   

3.
Nitrate assimilation has been studied in four species of yeasts; Candida nitratophila, Candida utilis, Hansenula anomala and Rhodotorula glutinis. Ammonium-grown cultures of these organisms did not assimilate nitrate but acquired the capacity to do so after a 3 h period of nitrogenstarvation. Ammonium inhibited nitrate assimilation completely in nitrate-grown cultures of R. glutinis. With Candida spp. ammonium and nitrate were assimilated simultaneously but each was assimilated at a lower rate than when either was supplied alone. Nitrogen-starved cultures of C. nitratophila contained enough nitrate reductase activity to sustain high rates of nitrate assimilation. Results indicate that the high levels of nitrate reductase in nitrate-grown cultures of C. nitratophila do not limit nitrate assimilation. Nitrate assimilation appears to be limited by nitrate uptake and/or the supply of reducing equivalents for nitrate reduction in these cultures.  相似文献   

4.
NADH:nitrate reductase (EC 1.6.6.1) from squash (Cucurbita maxima Duch., cv. Buttercup) can catalyze the reduction of a ferriphytosiderophore from barley (Hordeum vulgare L. cv. Europa). Maximal activity occurs at pH 6, with an apparentK m andV max of 76 M and 21 nmol·min-1·(mg protein)-1, respectively. The ferriphytosiderophore strongly inhibits nitrate reduction catalyzed by nitrate reductase at the optimal pH for nitrate reduction, i.e. 7.5. On the contrary, nitrate is a poor inhibitor of ferriphytosiderophore reduction catalyzed by nitrate reductase at the optimal pH for this reaction, pH 6.0. Thus, squash has the potential to assimilate the iron from a ferriphytosiderophore synthesized by another plant.  相似文献   

5.
A strain of Pseudomonas putida that can express a nitrate reductase that is located in the periplasmic compartment was isolated from freshwater. The enzyme was active in vivo during arginine fermentation and at the onset of oxygen limitation in batch cultures. The activity of the enzyme increased the yield of bacteria following fermentative growth under anoxic conditions with arginine, but nitrate reduction did not support growth on nonfermentable carbon substrates under anoxic conditions. Cells expressing the periplasmic nitrate reductase were capable of reducing nitrate in the presence of oxygen. Nitrate reduction under oxic conditions was clearly coupled to a respiratory electron transport chain because: (1) the process was sensitive to the respiratory inhibitors rotenone and 2-n-heptyl-4-hydroxyquinoline N-oxide, and (2) membrane-bound and periplasmic cytochromes were involved. This is the first report of the presence of a periplasmic nitrate reductase in a member of the proteobacteria.  相似文献   

6.
The periplasmic dissimilatory nitrate reductase from Rhodobacter capsulatus N22DNAR+ has been purified. It comprises a single type of polypeptide chain with subunit molecular weight 90,000 and does not contain heme. Chlorate is not an alternative substrate. A molybdenum cofactor, of the pterin type found in both nitrate reductases and molybdoenzymes from various sources, is present in nitrate reductase from R. capsulatus at an approximate stoichiometry of 1 molecule per polypeptide chain. This is the first report of the occurrence of the cofactor in a periplasmic enzyme. Trimethylamine-N-oxide reductase activity was fractionated by ion exchange chromatography of periplasmic proteins. The fractionated material was active towards dimethylsulphoxide, chlorate and methionine sulphoxide, but not nitrate. A catalytic polypeptide of molecular weight 46,000 was identified by staining for trimethylamine-N-oxide reductase activity after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. The same polypeptide also stained for dimethylsulphoxide reductase activity which indicates that trimethylamine-N-oxide and dimethylsulphoxide share a common reductase.Abbreviations DMSO dimethylsulphoxide - LDS lithium dodecyl sulphate - MVH reduced methylviologen - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate - TMAO trimethylamine-N-oxide  相似文献   

7.
Nitrate uptake in Chlorella saccharophila (Krüger) Nadson was found to be stimulated by blue light, leading to a doubling of the rate. In the presence of background red light (300 mol photons · m-2 · s-1), only 15–20 mol photons · m-2 · s-1 of blue light was sufficient to saturate this increased uptake rate. Incubation of Chlorella cells with anti-nitrate-reductase immunoglobulin-G fragments inhibited blue-light stimulation. However, ferricyanide (10 M) doubled and dithiothreitol (100 M) inhibited the stimulatory effect of blue light. Among the protein-kinase inhibitors used, only staurosporine (10 M) prevented the blue-light stimulation. Phosphatase inhibitors were without effect and sodium vanadate totally inhibited nitrate uptake, pointing to an involvement of the plasma-membrane ATPase. Preincubation of the cells with calmodulin antagonists or calcium ionophores did not significantly reduce blue-light stimulation of nitrate uptake. The data are discussed with regard to transduction of the signal for blue-light stimulation of nitrate uptake and the possibility that the plasma-membrane-bound nitrate reductase is the blue-light receptor.Abbreviations Chl chlorophyll - DMSO dimethylsulfoxide - 1,2-DHG 1,2-dihexanoylglycerol - ML-9 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine - NR nitrate reductase - H-7 1-(5-isoquinolinyl-sulfonyl)-2-methylpiperazine - IgG immunoglobulin G - PFD photon flux density - PM plasma membrane - W-7 N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide This work was supported by a grant from the Deutsche Forschungs-gemeinschaft to R.T.  相似文献   

8.
Despite the large number of studies of nitrate metabolism in plants, it remains undetermined to what extent this key plant system is controlled by overall plant N nutrition on the one hand, and by the nitrate ion itself on the other hand. To investigate these questions, V max for nitrate uptake (high-affinity range), and nitrate reductase (NR) mRNA and activity, were measured in roots of N-limited barley (Hordeum vulgare L. cv. Golf) grown under conditions of constant relative addition of nitrate, with the seminal roots split between two culture compartments. The total amount of nitrate added per unit time (0.09·d-1) was distributed between the two root parts (subroots) in ratios of 1000, 982, 955, 9010, 8020, and 5050. These nitrate-addition ratios resulted in nitrate fluxes ranging from 0 to 23 mol nitrate·g-1 DW root·h-1, while the external nitrate concentrations varied between 0 and 1.2 M. The apparent V max for net nitrate uptake showed saturation-type responses to nitrate flux maintained during preceding growth. The flux resulting in half-maximal induction of nitrate uptake was approximately 4 mol nitrate·g-1 DW root·h-1, corresponding to an external nitrate concentration of 0.7 M. The activity of NR and levels of NR mRNA did not saturate within the range of nitrate fluxes studied. None of the parameters studied saturated with respect to the steady-state external nitrate concentration. At the zero nitrate addition — the 0%-root — initial uptake activity as determined in short-term 15N-labelling experiments was insignificant, and NR activity and NR mRNA were not detectable. However, nitrate uptake was rapidly induced, showing that the 0%-root had retained the capacity to respond to nitrate. These results suggest that local nitrate availability has a significant impact on the nitrate uptake and reducing systems of a split-root part when the total plant nitrate nutrition is held constant and limiting.Abbreviation NR nitrate reductase This work was supported by the Lars Hierta Memory Foundation, the Royal Swedish Academy of Sciences, and by the Swedish Natural Science Research Council via project grants (to C.-M.L. and B.I.) and visiting scientist grant (to W.H.C.). We thank Mrs. Ellen Campbell for technical advice, and Mrs. Judith V. Purves, Long Ashton Research Station, Long Ashton, UK, for analyses of 15N-labelling in tissue samples.  相似文献   

9.
The mechanism of nitrate uptake for assimilation in procaryotes is not known. We used the radioactive isotope, 13N as NO3 -, to study this process in a prevalent soil bacterium, Pseudomonas fluorescens. Cultures grown on ammonium sulfate or ammonium nitrate failed to take up labeled nitrate, indicating ammonium repressed synthesis of the assimilatory enzymes. Cultures grown on nitrite or under ammonium limitation had measurable nitrate reductase activity, indicating that the assimilatory enzymes need not be induced by nitrate. In cultures with an active nitrate reductase, the form of 13N internally was ammonium and amino acids; the amino acid labeling pattern indicated that 13NO3 - was assimilated via glutamine synthetase and glutamate synthase. Cultures grown on tungstate to inactivate the reductase concentrated NO3 - at least sixfold. Chlorate had no effect on nitrate transport or assimilation, nor on reduction in cell-free extracts. Ammonium inhibited nitrate uptake in cells with and without active nitrate reductases, but had no effect on cell-free nitrate reduction, indicating the site of inhibition was nitrate transport into the cytoplasm. Nitrate assimilation in cells grown on nitrate and nitrate uptake into cells grown with tungstate on nitrite both followed Michaelis-Menten kinetics with similar K mvalues, 7 M. Both azide and cyanide inhibited nitrate assimilation. Our findings suggest that Pseudomonas fluorescens can take up nitrate via active transport and that nitrate assimilation is both inhibited and repressed by ammonium.  相似文献   

10.
Summary In the present study nitrate uptake by maize (Zea mays L.) roots was investigated in the presence or absence of ferricyanide (hexacyanoferrate III) or dicumarol. Nitrate uptake caused an alkalization of the medium. Nitrate uptake of intact maize seedlings was inhibited by ferricyanide while the effect of dicumarol was not very pronounced. Nitrite was not detected in the incubation medium, neither with dicumarol-treated nor with control plants after application of 100 M nitrate to the incubation solution. In a second set of experiments interactions between nitrate and ferricyanide were investigated in vivo and in vitro. Nitrate (1 or 3 mM) did neither influence ferricyanide reductase activity of intact maize roots nor NADH-ferricyanide oxidoreductase activity of isolated plasma membranes. Nitrate reductase activity of plasma-membrane-enriched fractions was slightly stimulated by 25 M dicumarol but was not altered by 100 M dicumarol, while NADH-ferricyanide oxidoreductase activity was inhibited in the presence of dicumarol. These data suggest that plasma-membrane-bound standard-ferricyanide reductase and nitrate reductase activities of maize roots may be different. A possible regulation of nitrate uptake by plasmalemma redox activity, as proposed by other groups, is discussed.Abbreviations ADH alcohol dehydrogenase - HCF III hexacyanoferrate III (ferricyanide) - ME NADP-dependent malic enzyme - NR nitrate reductase - PM plasma membrane - PM NR nitrate reductase copurifying with plasma membranes  相似文献   

11.
Bacteroids of Bradyrhizobium japonicum strain CB1809, unlike CC705, do not have a high level of constitutive nitrate reductase (NR; EC 1.7.99.4) in the soybean (Glycine max. Merr.) nodule. Ex planta both strains have a high activity of NR when cultured on 5 mM nitrate at 2% O2 (v/v). Nitrite reductase (NiR) was active in cultured cells of bradyrhizobia, but activity with succinate as electron donor was not detected in freshly-isolated bacteroids. A low activity was measured with reduced methyl viologen. When bacteroids of CC705 were incubated with nitrate there was a rapid production of nitrite which resulted in repression of NR. Subsequently when NiR was induced, nitrite was utilized and NR activity recovered. Nitrate reductase was induced in bacteroids of strain CB1809 when they were incubated in-vitro with nitrate or nitrite. Increase in NR activity was prevented by rifampicin (10 g· ml-1) or chloramphenicol (50 g·ml-1). Nitrite-reductase activity in bacteroids of strain CB1809 was induced in parallel with NR. When nitrate was supplied to soybeans nodulated with strain CC705, nitrite was detected in nodule extracts prepared in aqueous media and it accumulated during storage (1°C) and on further incubation at 25°C. Nitrite was not detected in nodule extracts prepared in ethanol. Thus nitrite accumulation in nodule tissue appears to occur only after maceration and although bacteroids of some strains of B. japonicum have a high level of a constitutive NR, they do not appear to reduce nitrate in the nodule because this anion does not gain access to the bacteroid zone. Soybeans nodulated with strains CC705 and CB1809 were equally sensitive to nitrate inhibition of N2 fixation.Abbreviations NR nitrate reductase - NiR nitrite reductase - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

12.
When Clostridium formicoaceticum was grown on fumarate or l-malate crude cell extracts contained a high fumarate reductase activity. Using reduced methyl viologen as electron donor the specific activity amounted to 2–3.5 U per mg of protein. Reduced benzyl viologen, FMNH2 and NADH could also serve as electron donors but the specific activities were much lower. The NADH-dependent activity was strictly membrane-bound and rather labile. Its specific activity did not exceed 0.08 U per mg of particle protein. Fumarate reductase activity was also found in cells of C. formicoaceticum grown on fructose, gluconate, glutamate and some other substrates.The methyl viologen-dependent fumarate reductase activity could almost completely be measured with intact cells whereas only about 25% of the cytoplasmic acetate kinase activity was detected with cell suspensions. The preparation of spheroplasts from cells of C. formicoaceticum in 20 mM HEPES-KOH buffer containing 0.6 M sucrose and 1 mM dithioerythritol resulted in the specific release of 88% of the fumarate reductase activity into the spheroplast medium. Only small amounts of the cytoplasmic proteins malic enzyme and acetate kinase were released during this procedure. These results indicate a peripheral location of the fumarate reductase of C. formicoaceticum on the membrane.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - O.D optical density - DTE dithioerythritol  相似文献   

13.
The periplasmic nitrate reductase was assayed in intact cells of Thiosphaera pantotropha, after aerobic growth with either malate, succinate, acetate, butyrate or caproate present as sole carbon source. The level of enzyme activity was largely dependent upon carbon source and was lowest on malate and succinate, intermediate on acetate and highest on butyrate and caproate. The presence or absence of nitrate did not effect enzyme activity. The results indicate that, during aerobic growth, activity of the periplasmic nitrate reductase increases with the extent of reduction of the carbon substrate.Abbreviation MV+ reduced methylviologen  相似文献   

14.
The nitrate reductase activity (NR) of selected uptake hydrogenase-positive (hup +) and uptake hydrogenase-negative (hup -) strains of Bradyrhizobium japonicum were examined both in free-living cells and in symbioses with Glycine max L. (Marr.) cv. Williams. Bacteria were cultured in a defined medium containing either 10 mM glutamate or nitrate as the sole nitrogen source. Nodules and bacteriods were isolated from plants that were only N2-dependent or grown in the presence of 2 mM KNO3. Rates of activity in nodules were determined by an in vivo assay, and those of cultured cells and bacteriods were assayed after permeabilization of the cells with alkyltrimethyl ammonium bromide. All seven strains examined expressed NR activity as free-living cells and as symbiotic forms, regardless of the hup genotype of the strain used for inoculation. Although the presence of nitrate increased nitrate reduction by cultures cells and nodules, no differences in NR activity were observed between bacteroids isolated from nodules of plants fed with nitrate or grown on N2-fixation exclusively. Cultured cells, nodules and bacteriods of strains with hup - genotype (USDA 138, L-236, 3. 15B3 and PJ17) had higher rates of NR activity than those with hup + genotype (USDA 110, USDA 122 DES and CB1003). These results suggest that NR activity is reduced in the presence of a genetic determinant associated with the hup region of B. japonicum.Abbreviations EDTA ethylene-diamine tetraacetic acid - Hup hydrogen uptake - MOPS 3-(N-morpholino)-propane sulfonic acid - NR nitrate reductase - PVP polyvinyl-polypyrrolidone - Tris Tris(hydroxymethyl)-aminomethane  相似文献   

15.
Ferric reductase enzymes requiring a reductant for maximal activity were purified from the cytoplasmic and periplasmic fractions of avirulent and virulent Legionella pneumophila. The cytoplasmic and periplasmic enzymes are inhibited by zinc sulfate, constitutive and active under aerobic or anaerobic conditions. However, the periplasmic and cytoplasmic reductases are two distinct enzymes as shown by their molecular weights, specific activities, reductant specificities and other characteristics. The molecular weights of the cytoplasmic and periplasmic ferric reductases are approximately 38 and 25 kDa, respectively. The periplasmic reductase (K m = 7.0 m) has a greater specific activity and twice the affinity for ferric citrate as the cytoplasmic enzyme (K m = 15.3 m). Glutathione serves as the optimum reductant for the periplasmic reductase, but is inactive for the cytoplasmic enzyme. In contrast, NADPH is the optimum reductant for the cytoplasmic enzyme. Ferric reductases of avirulent cells show a 2-fold increase in their activities when NADPH is used as a reductant in comparison with NADH. In contrast, ferric reductases from virulent cells demonstrated an equivalent activity with NADH or NADPH as reductants. With the exception of their response to NADPH, the ferric reductase at each respective location appears to be similar for avirulent and virulent cells.  相似文献   

16.
The effect of the nitrogen source on nitrate reductase and nitrite reductase synthesis has been studied in several filamentous dinitrogen-fixing cyanobacteria belonging to the genera Anabaena, Nostoc and Calothrix. Nitrate and nitrite uptake were also studied. High levels of both nitrate reductase and nitrite reductase were found only in the presence of nitrate or nitrite, as long as ammonium was absent from the culture medium. On the other hand, whereas nitrate uptake is an active process, two components, diffusion of nitrous acid and active transport of nitrite, appear to contribute to nitrite uptake.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - MOPS 3-(N-morpholino)propanesulfonic acid - TES N-tris(hydroxymethyl)methyl-2-aminoethane-sulfonic acid - Tricine N-tris(hydroxymethyl)methylglycine  相似文献   

17.
The narB gene from the cyanobacterium Synechococcus sp. PCC 7942 was cloned downstream from the LacI-regulated promoter Ptrc in the Escherichia coli vector pTrc99A, rendering plasmid pCSLM1. Addition of isopropyl--D-thiogalactoside to E. coli (pCSLM1) resulted in the parallel expression of a 76 kDa polypeptide and a nitrate reductase activity with properties identical to those known for nitrate reductase isolated from Synechococcus cells. As is the case for nitrate reductase from Synechococcus cells, either reduced methyl viologen or reduced ferredoxin could be used as an electron donor for the reduction of nitrate catalyzed by E. coli (pCSLM1) extracts. This data shows that narB is a cyanobacterial structural gene for nitrate reductase.  相似文献   

18.
Gisela Mäck  Rudolf Tischner 《Planta》1990,182(2):169-173
The pericarp of the dormant sugarbeet fruit acts as a storage reservoir for nitrate, ammonium and -amino-N. These N-reserves enable an autonomous development of the seedling for 8–10 d after imbibition. The nitrate content of the seed (1% of the whole fruit) probably induces nitrate-reductase activity in the embryo enclosed in the pericarp. Nitrate that leaks out of the pericarp is reabsorbed by the emerging radicle. Seedlings germinated from seeds (pericarp was removed) without external N-supply are able to take up nitrate immediately upon exposure via a low-capacity uptake system (vmax = 0.8 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.12 mM). We assume that this uptake system is induced by the seed nitrate (10 nmol/seed) during germination. Induction of a high-capacity nitrate-uptake system (vmax = 3.4 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.08 mM) by externally supplied nitrate occurs after a 20-min lag and requires protein synthesis. Seedlings germinated from whole fruits absorb nitrate via a highcapacity uptake mechanism induced by the pericarp nitrate (748 nmol/pericarp) during germination. The uptake rates of the high-capacity system depend only on the actual nitrate concentration of the uptake medium and not on prior nitrate pretreatments. Nitrate deprivation results in a decline of the nitrate-uptake capacity (t1/2 of vmax = 5 d) probably caused by the decay of carrier molecules. Small differences in Ks but significant differences in vmax indicate that the low- and high-capacity nitrate-uptake systems differ only in the number of identical carrier molecules.Abbreviations NR nitrate reductase - pFPA para-fluorophenylalanine This work was supported by a grant from Bundesministerium für Forschung und Technologie and by Kleinwanzlebener Saatzucht AG, Einbeck.  相似文献   

19.
Exogenous proline betaine (N,N-dimethylproline or stachydrine) highly stimulated the growth rate of Rhizobium meliloti, in media of inhibitory concentration of NaCl whereas proline was ineffective. High levels of proline betaine uptake occurred in cells grown in media of elevated osmotic strength; on the contrary, only low activity was found in cells grown in minimal medium. The apparent K m was 10 M with a maximal transport rate of 25 nmol min-1 mg-1 of protein in 0.3 M NaCl-grown cells. The concentrative transport was totally abolished by KCN (2 mM), 2,4-dinitrophenol (2 mM), and carbonyl cyanide-m-chlorophenyl hydrazone (CCCP 10 M) but was insensitive to arsenate (5 mM). Glycine betaine was a very potent inhibitor of proline betaine uptake while proline was not. Proline betaine transport was not reduced in osmotically shocked cells and no proline betaine binding activity was detected in the crude periplasmic shock fluid. In the absence of salt stress, Rhizobium meliloti actively catabolized proline betaine but this catabolism was blocked by increasing the osmotic strength of the medium. The osmolarity in the growth medium regulates the use of proline betaine either as a carbon and nitrogen source or as an osmoprotectant.Abbreviations LAS lactate-aspartate-salts - MSY mannitol-salts-yeast - CCCP carbonyl cyanide-m-chlorophenyl hydrazone - DCCD dicyclohexylcarbodiimide - KCN potassium cyanide - Hepes 4-(2-hydroxyethyl)-1-piperzine-ethanesulphonic acid  相似文献   

20.
  1. The formation and reversion of spheroplasts of the diaminopimelic acid-auxotrophic mutant Escherichia coli K 12, 335, dap , R+TEM in a medium lacking diaminopimelic acid have been investigated by microphotography: During their development from rod form cells to spheroplasts cells on slide-surface-agar preparations underwent two successive cell divisions in the course of which the cells retained their rod form. The cells formed by these divisions partitioned into a varying number of spheroplasts of different size. The reversion of spheroplasts to rod form cells, started by the addition of diaminopimelic acid showed two characteristic steps: Each spheroplast partitioned again into several spheroplast-like cell bodies; most of them reverted directly to rod form cells.
  2. The release of the R-factor mediated periplasmic TEM-β-lactamase, E. C. 3.4.2.6., into the growth medium during the development of spheroplasts attained more than 50% of the entire TEM-β-lactamase activity.
The spheroplasts showed a multiple enhancement of TEM-β-lactamase activity per mg cell protein compared with rod form cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号